EDUMATSAINS

JURNAL PENDIDIKAN MATEMATIKA DAN SAINS E-ISSN:2527-7235 Volume 9 Issue. 1, July, 2024, pp 40-50 http://ejournal.uki.ac.id/index.php/edumatsains

The Influence of Bullying Experiences on Mathematics Curiosity in Prospective Mathematics Teachers

Rizka Kamalia Agustin¹, Rizqona Maharani^{2*}

^{1,2} Department of Mathematics Education, Institut Agama Islam Negeri Kudus, Central Java, Indonesia e-mail: rizkakamalia7@gmail.com¹* rmaharani@iainkudus.ac.id²

Article Info

Article history: Received : June 18, 2024 Revised : July 23, 2024 Accepted : July 24, 2024 Available online : July 31, 2024

https://doi.org/10.33541/edumatsains.v8i1.4576

Abstract

In the current era, bullying is increasingly happening, especially to students. Bullying is an act of hurting other people that can cause mental and psychological trauma. In this case, students need to minimize bullying in order to instill curiosity when learning mathematics. Mathematical curiosity in mathematics learning is a positive attitude that influences the success of achieving mathematics learning goals. This research aims to determine the effect of bullying experiences on student's mathematical curiosity. This research includes regression research, data collection through questionnaires, observation, and documentation to measure the variables of bullying experiences and mathematical curiosity. The research sample was taken using cluster random sampling techniques and obtained two classes of students majoring in mathematics totaling 49 students. Data analysis in this study used a simple Linear Regression Test. The results of the research show that there is a negative and significant influence of -0,29 between the experience of bullying and curiosity about mathematics in prospective mathematics teachers. Curiosity towards mathematics is one of the factors that prevents prospective mathematics teachers from experiencing bullying.

Keywords: Mathematics curiosity, Mathematics learning, Bullying experience, Prospective mathematics teacher

1. Introduction

School is a place to study, where there are several important roles in it, both in terms of learning and socializing (Subianto, 2013). In terms of learning, students study and understand the material taught by the teacher (Susilo & Khabibah, 2010). The teacher explains and the students listen. After that, questions and answers can be held and discussions between the two regarding the material. Meanwhile, in terms of socializing, a student's character is formed when interacting between friends in the school environment (Kurniawan & Sudrajat, 2020). The interactions that arise sometimes have positive and negative influences on students. Positive influence can make students have a high social spirit, including students who dare to speak, be open, and care about others (Wicaksana & Rachman, 2018). Meanwhile, negative influences can damage a student's mental health, including talking dirty, being naughty, fighting, and so on (Shaputra, 2023). From these negative influences, students can potentially engage in bullying.

Bullying is an action of people who have the power individually or in groups to hurt someone, so that it can traumatize them mentally and psychologically (Zakiyah, Humaedi, & Santoso, 2017). According to Barbara Coloroso (2003) in Muzdalifah's (2020) research, bullying is a hostile act carried out intentionally with the intention of injuring and hurting, such as intimidation in the form of threats. Chapell, et al (2004) in Ananto's (2019) research stated that there are two

dimensions of bullying, including academic bullying and personal bullying. Someone who is exposed to bullying tends to have a lack of self-confidence, anxiety, restlessness, fear and depression (Budhiarti, 2009). Bullying practices are divided into three main categories: physical, verbal, and mental or psychological. Physical bullying includes actions such as physical violence, verbal bullying in the form of insults and verbal expressions, while psychological bullying, which is the most dangerous because it is difficult to observe, includes acts of isolating, subtly humiliating, or terrorizing in secret (Simbolon, 2024).

Bullying behavior does not only occur among students (Pardede et al., 2021). Students aged 18-25 years are in the early adulthood phase and should be able to control their emotions and focus on academic tasks (Rahmaniyah et al., 2020). However, in reality this does not always happen. Research at Jakarta State University revealed that 19,87% of students from the 2013–2015 class experienced bullying, with students more often facing physical bullying and female students tending to experience relational bullying (Na'imah et al., 2016). Research at UNM Al Washliyah revealed that 74,5% of students had moderate levels of bullying behavior, with verbal bullying as the most dominant type (73,5%), and 7th semester students showed the highest prevalence at 83,9% (Putri & Silalahi, 2017). This behavior can have a bad influence on student learning outcomes, especially at school.

One of the compulsory subjects at school is mathematics (Kusumawati & Irwanto, 2016). Mathematics is an abstract science that discusses numbers, space, symbolic and numerical language, logical thinking, pattern relationships, and mathematical forms and structures (Amir & Prasojo, 2016). Mathematics is a science that is studied in schools at primary, secondary and tertiary levels (Rahmah, 2018). In college, mathematics is also called a difficult and scary subject. Apart from the difficult material, mathematics lecturers or teachers are also known for being tough (Broadhurst, 2020). This is what makes students find it In mathematics learning, bullying can be carried out between individuals or groups (Ramadhanti & Hidayat, 2022). Bullying in mathematics learning includes things like when you do a math problem in front but the answer is wrong, then others make fun of you and make the student mentally down; during a discussion in class regarding solving mathematics problems, there are students who have an opinion but other friends doubt and laugh at their opinion; students who are not very clever are shunned by their friends because they don't give the answers they have, students who are too clever are also shunned because they are different from the others, and so on (Maharani, 2018). Students who are exposed to bullying during the lecture process in class make them no longer willing to try and have an opinion. So the perception arises that if he has an opinion and can do it then his friends will not like him because he is often said to be looking for the lecturer's attention. This behavior of their friends will affect student's curiosity and cause them to become inactive every time learning takes place (Arya, 2018). If students are not active during learning, they will be confused when working on questions because many questions will arise in their minds. Olweus (1996) in Ananto's (2019) research explains that bullying is carried out when students repeatedly make sarcastic, arrogant or hurtful comments towards students. Students who receive such treatment will feel unappreciated and afraid to express their opinions. This shows that verbal and social bullying is still often found in classrooms. In line with Bandura's theory, human behavior is largely the result of the learning process. This also applies to violent behavior, including cases of bullying. The social learning theory developed by Bandura explains that violent behavior is behavior that is learned from past experience, either through direct observation (imitation), positive reinforcement, or discriminatory stimuli. Violent behavior is often associated with social learning theory, which emphasizes the importance of the learning process through observation (Simbolon, 2024).

Bullying in class hinders student's interest in learning, so it needs to be eliminated to support a deeper understanding of the material and encourage curiosity (Sumanik, Nurvitasari, Sumanik, & Siregar, 2021). Individuals who have the will and desire to learn will have great curiosity about mathematics, while individuals who do not have the will and desire to learn will be unenthusiastic and bored when studying mathematics (Hadiat & Karyati, 2019).

The influence between bullying and curiosity on mathematics is a complex topic that has not been studied directly, but can be analyzed through related research: 1). Bullying has a negative impact on student's academic achievement by reducing self-confidence, motivation and interest in learning, including subjects such as mathematics (Kamid dkk., 2021); 2). Mathematics curiosity and motivation increases in a positive learning environment and is supported by good relationships with teachers and peers (Peterson & Cohen, 2019); 3). Affective aspects, such as emotions and attitudes towards learning, play an important role in student's mathematical curiosity. However, negative experiences, such as bullying, can weaken their positive attitudes and engagement towards the subject (Andersson & Wagner, 2017); 4). A positive, bullying-free environment has been proven to improve student's academic results, curiosity and interest in mathematics (Jaen & Baccay, 2016).

Student's desire and willingness to acquire new knowledge that they have not yet obtained in class is a form of curiosity (Nehru & Irianti, 2020). An effective step to increase curiosity is by asking students critical and complex questions. This method can be used so that he has the curiosity to find the right response to the question (Zetriuslita, 2016). That way, students will feel challenged and will no longer feel afraid during the learning process. So researchers are interested in examining how bullying experiences influence the attitude of curiosity in prospective mathematics teachers.

2. Methods

This research is a regression study to determine the significance of the influence of bullying experiences on a student's mathematical curiosity. This research is quantitative research because to see the influence of these factors on mathematical curiosity, a score instrument is used that has been filled in by students. This research has one independent variable, namely bullying (X) and also one dependent variable, namely mathematics curiosity (Y).

The relationship between these variables determines the factors that are predictors of mathematics curiosity in students. This research examines the extent to which bullying experiences are a predictor of a student's curious attitudes. Figure 1 below shows the regression design of bullying experiences with student's curiosity.

Figure 1 Influence between predictors (bullying experience) and outcome (mathematics curiosity)

The population of this study involved Mathematics Education students aged 18-25 years at one of the universities in Kudus who had experienced bullying, either as victims, perpetrators, or both. From a total of 75 students in 3 classes, researchers randomly selected samples using cluster random sampling techniques. After drawing lots, 2 classes (B and C) were selected with a total of

49 students. Based on calculations using the Isaac and Michael formula quoted from Sugiyono's research by Amin et al. (2023), the minimum sample size required is 43 students. Apart from that, researchers also tested the bullying experience instrument on 26 students in class A separately.

This research uses questionnaires, observation and documentation. Questionnaire instrument with a Likert scale containing statements formulated based on indicators of bullying and mathematical curiosity. The dimensions of bullying experience include academic bullying and personal bullying. The bullying experience indicators used are (1) degrading academic abilities, (2) social intimidation, (3) obstruction of academic development, (4) verbal insults, (5) physical violence, (6) acts of exclusion (Ananto, 2019; Coloroso, 2006). Apart from that, the questionnaire indicators used by mathematics curiosity are asking questions about existing information or problems (Zetriuslita, 2016), studying the material by reading several books related to the subject matter (Asmoro & Mukti, 2019), willingness to learn, and the willingness to find solutions to existing problems (Latifah & Widjajanti, 2017).

The mathematics curiosity questionnaire instrument uses a questionnaire from Sthephani and Yolanda (2021) which is analyzed quantitatively. Meanwhile, the bullying questionnaire instrument has 24 items representing each indicator. The results of respondent's answers were analyzed and interpreted using alternative answers from a Likert scale which included Strongly Agree (SS), Agree (S), Disagree (TS), and Strongly Disagree (STS). Before the instrument was used, its contents were first validated by 3 mathematics lecturers as experts. To prove whether the instrument meets content validity (seen from the aspects of construction, material and language of the instrument), the validity index proposed by Aiken Retnawati (2017) or what is called the V Aiken index is used with the following formula.

$$V = \frac{\sum s}{n(c-1)}$$

Where V is the index of rater agreement regarding the validity of the item, s is the score determined by the rater minus the lowest score in the category used, n shows the number of raters, and c shows the many categories that the rater can choose. An instrument is said to meet content validity if it has a V Aiken index in the medium range category 0.40 - 0.80 and in the very valid category the V Aiken index > 0.80. The results of proving content validity by three experts show that the bullying instrument in the construction and language aspects has an average value of 0.83 in the very valid category, while the material aspect has an average value of 0.75 in the medium category. This means that each instrument in this research has been proven to have content validity both from the material, construction, and language aspects.

Construct validity for the bullying variable is shown by the standard model in Figure 2.

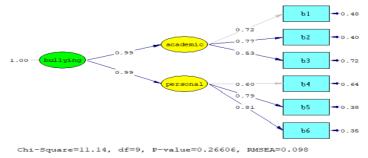
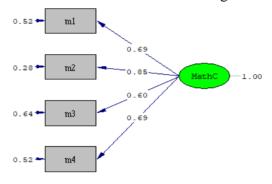



Figure 2. Theory construct of bullying experience

Figure 2 shows a standard model with factor loads (path coefficients from latent variables to

observable variables) that are moderate to very high (b1, b2, b3, b4, b5, b6). This indicates that all observed/observable variables make a significant contribution to measuring the latent variable bullying experience which includes academic and personal bullying. Apart from that, the model in Figure 2 is a suitable model to explain the construction of bullying experience theory because $p_{value} = 0.266 > 0.05$, $\chi^2 = 11.14 \le 2df = 18$, and RMSEA = 0.098 < 0.100. This means that the standard bullying experience model is a fit model according to the goodness of fit criteria by (Schermelleh-Engel et al., 2003). This shows that a student's bullying experiences do not only include academic bullying but also personal bullying. Construct reliability for the academic dimension of bullying was obtained at 0.72 and for the personal dimension of bullying at 0.78. These results indicate that each dimension of the bullying experience construct is reliable.

The mathematics curiosity variable is shown in the standard model in Figure 3.

Chi-Square=0.18, df=2, P-value=0.91253, RMSEA=0.000

Figure 3. Theory construct of mathematics curiosity

Figure 3 shows a standard model with factor loads (path coefficients from latent variables to observable variables) that are moderate to very high (mc1, mc2, mc3, mc4). This shows that all observation variables make a significant contribution to measuring the latent variable mathematics curiosity. Apart from that, the model in Figure 3 is a suitable model to explain the construction of the mathematical curiosity theory because $p_{value} = 0.91 > 0.05$, $\chi^2 = 0.18 \le 2df = 4$, and RMSEA = 0.000 < 0.100. This means that the standard mathematics curiosity model is an appropriate model according to goodness of fit criteria. Construct reliability for mathematics curiosity was obtained at 0.82. The results show that the curiosity construct is reliable.

Data obtained from bullying experience questionnaire scores, and mathematical curiosity were tested for significant simultaneous relationships using simple linear regression (F test). Meanwhile, to see the partial relationship between the independent variable and the dependent variable, the partial t test is used. Before carrying out a significance test, the data is confirmed to be normal, homoscedasticity, linear and autocorrelation. After fulfilling several prerequisites, a simple linear regression test was carried out with the help of SPSS 26. Hypotheses formulated in this research were that there was a significant negative influence between student's experiences of bullying and their curiosity about mathematics (H_a).

After showing the significance of the influence between the independent variable and the dependent variable, the coefficient of determination R^2 between the independent variable and the dependent variable is determined either partially or simultaneously. The coefficient of determination or value is defined as the percentage of variation in the dependent variable that is explained by the independent variable. The independent variable has a very strong contribution to

the attachment variable if $R^2 \ge 0.65$, has a strong contribution when $0.40 \le R^2 < 0.65$, and has a weak contribution for $R^2 < 0.20$ (Berman & Wang, 2017). The partial determinant coefficient, also called effective contribution, is a value (in percent) to see the magnitude of the influence contribution made by each independent variable (bullying experience) to the dependent variable (mathematics curiosity).

The influence between variables can also be expressed using an equation y = a + bx where is the dependent variable, is the independent variable, is the constant (intercept), and is the regression coefficient for each independent variable. This equation model is said to be a fit model if the results of the F test show that there is a significant simultaneous influence between the experience of bullying and mathematics curiosity.

3. Result and Discussion

In this research, prerequisite tests were carried out before carrying out the simple linear regression test, namely the normality test, linearity test, homoscedasticity test, and autocorrelation test. This normality test uses the Kolmogorov Smirnov test assisted by SPSS 26. Based on the results of the normality test, a p_{value} of $0,20 \ge 0,05$ was obtained so that the data on students' experiences regarding bullying and mathematics curiosity had a significantly normal distribution. In the linearity test, the bullying and mathematics curiosity variables obtained a value of 0.28 > 0.05, so it can be seen that the two variables have a linear relationship.

Furthermore, the autocorrelation test obtained a variable value of 1,58 < 1,92 < 2,42 (dU < d < 4 - dU). So, in this study there was no autocorrelation between the variables bullying and mathematics curiosity. The final step is to carry out a homoscedasticity test. From this test, this variable obtained a value of 1,00 > 0,05. So it is known that in this study there were no symptoms of homoscedasticity. Thus, all prerequisite tests for this research data have been fulfilled.

The results of the t test on the simple linear regression test between X and Y can be seen in Table 1.

Table 1.Partial T-Test Between Independent Variables and Dependent Variable

Model		Unstandardized Coefficients		Standardized Coefficients		
		В	Std. Error	Beta	t	Sig.
1	(Constant)	126.32	7.84		16.11	0.00
	Bullying experience	-0.37	0.17	-0.29	-2.10	0.04

a. Dependent Variable: mathematics curiosity

Table 1 shows that the significance value of the independent variable (bullying) has a $p_{value} < 0.05$ and the coefficient of the independent variable is negative. This means that bullying has a statistically significant negative influence of mathematical curiosity. Based on Table 1, the simple linear regression equation model between bullying and mathematics curiosity can be expressed as:

$$y = 126.32 - 0.37X$$

Based on the y-intercept equation, it is known that if there is no bullying then mathematics curiosity is worth 126,32. Based on this equation, it can also be seen that for every 1% increase in

curiosity about mathematics, the experience of bullying will decrease by 0,37.

Meanwhile, the results of the significance test of the influence between the independent variables simultaneously and the dependent variable are shown in Table 2.

 Table 2.

 F-Test for Simultaneous Influence Between Bullying Experience with Mathematics Curiosity

	Model	Sum of Squares	Df	Mean Square	F	Sig.
1	Regression	544.75	1	544.75	4.40	0.04^{a}
	Residual	5825.78	47	123.95		
	Total	6370.53	48			

a. Predictors: (Constant), bullying experience

Table 2 shows that $p_{value} < 0.05$ so that the experience of bullying has a statistically significant simultaneous effect on mathematical curiosity. In other words, the equation model y = 126.32 - 0.37 is a suitable model to explain mathematics curiosity based on bullying experience simultaneously.

Meanwhile, the strength of the simultaneous influence between bullying experience with mathematics curiosity can be seen in Table 3.

Tabel 3.Summary of Models for the Effects of Predictors and Outcomes

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	0.292^{a}	0.09	07	11.13

a. Predictors: (Constant), bullying experience

The experience of bullying with mathematical curiosity has a weak simultaneous contribution because it has an R Square value of 0,09 or 9 % (See Table 3) which is in the interval $R^2 < 0,20$. Meanwhile, the partially effective contribution of bullying experiences to mathematical curiosity can be calculated by utilizing the correlation coefficient of the independent variable with the dependent variable in Table 4.

Table 4.Correlation Test Result

		Bullying	Mathematical		
		Experience	Curiosty		
Pearson	Bullying	1	-0.29		
Correlation	Mathematical		0.04		
	Curiosity				
Sig.	Bullying		.00		
(1-tailed)	Mathematical	.00			
	Curiosity				
	Curiosity		·		

In Table 1 and Table 4 it is known that the relationship between bullying experiences and mathematics curiosity has a negative correlation of 0,29. These results indicate that the experience of bullying makes a smaller contribution to the mathematics curiosity of prospective mathematics teachers. However, in Table 4 it can be seen that the experience of bullying with

b. Dependent Variable: mathematics curiosity

mathematics curiosity has a low level of correlation.

The experience of bullying has a statistically significant negative influence on mathematical curiosity. These results show that the lower the bullying experience of prospective mathematics teachers, the higher the chance that they will have mathematics curiosity. Vice versa, the higher the experience of bullying, the lower the possibility of having mathematics curiosity. This factor also has a weak correlation with the mathematics curiosity experienced by students. This means that the resilience of a student's curiosity is to a small extent influenced by the collective experience of bullying. This means that the experience of bullying can influence students majoring in mathematics on their curiosity when learning. Prospective mathematics teachers who minimize their experiences of bullying will be able to raise their curiosity and be able to solve mathematics problems in class. When a classmate couldn't learn, he would help them. As stated by Batubara (2018), helping someone in difficulty will make it easier to seek knowledge (study). Research conducted by (Sumartini, 2019) illustrates that motivation and inspiration can influence prospective teacher's mathematics learning. In line with this, research (Sumartini, 2019) regarding mathematics anxiety in prospective teachers discusses how negative experiences including bullying can affect confidence and ability in teaching mathematics. Research (Romadhoni et al., 2023) states that the experience of bullying can affect psychological wellbeing, social interaction and ability to adapt. This is relevant to understanding the impact on prospective mathematics teachers where the experience of teacher bullying influences prospective teacher's curiosity.

Bullying is defined as a specific type of aggression that involves an imbalance of power and repeated, intentionally harmful behavior directed at another person. It is not surprising that the experience of bullying has a negative correlation with mathematics curiosity. This is because if someone has the experience of bullying while studying mathematics, then he will not dare to ask questions or do the questions in front of him. In accordance with the opinion of Wahani et al. (2022), bullying that occurs will have an influence on a person's curiosity.

These results highlight important preventive factors against bullying and that mathematical curiosity must be integrated into mathematics learning activities. In this case, we must bury or take the positive side of the bullying experience so that we can apply curiosity to ourselves when learning mathematics. In addition, future research can investigate external factors that influence mathematics curiosity and other internal factors such as self-concept. Future research could also involve more respondents and investigate the impact of bullying on mathematics teacher's perspectives. So we can investigate whether it is true that the mathematics teacher is fierce and scary because of the bullying he experienced during lectures?

4. Conclusion

The experience of bullying has a significant negative influence of -0,29 on mathematics curiosity in prospective mathematics teachers. Prospective mathematics teachers who have high levels of bullying experience are less likely to have mathematical curiosity. This factor is the reason why prospective mathematics teachers are reluctant to ask questions or have curiosity during learning. Further research can be carried out by increasing the research sample and relating the impact of mathematics teachers' bullying experiences on their image when teaching in class. External factors such as self-concept are also important to explore regarding the influence of bullying experienced by students.

5. Acknowledgments

The researcher would like to express his thanks and highest appreciation to Mrs. Rizqona Maharani, M.Pd. who has taken the time and guided the researcher in writing this article.

6. References

Amin, N. F., Garancang, S., & Abunawas, K. (2023). Konsep Umum Populasi dan Sampel dalam Penelitian. In *Pilar* (Vol. 14, Issue 1, pp. 15–31).

Amir, M. F., & Prasojo, B. H. (2016). Matematika Dasar. In Umsida Press (Vol. 53, Issue 9).

Ananto, C. A. M. (2019). Gambaran Bentuk Bullying yang Dilakukan Dosen Berdasarkan Persepsi Mahasiswa pada Universitas "X" di Jakarta.

Andersson, A., & Wagner, D. (2017). Love and Bullying in Mathematical Conversations. 9th International Mathematics Education and Society Conference (MES9), 1–10.

Arya, L. (2018). Melawan bullying Mengagas Kurikulum Anti Bullying di Sekolah. Sepilar Publishing House. In CV. Sepilar Publishing House.

Asmoro, B. P., & Mukti, F. D. (2019). Peningkatan Rasa Ingin Tahu Ilmu Pengetahuan Alam Melalui Model Contextual Teaching and Learning Pada Siswa Kelas Va Sekolah Dasar Negeri Karangroto 02. *Abdau: Jurnal Pendidikan Madrasah Ibtidaiyah*, 2(1), 115–142.

Batubara, L. N. (2018). Etika Peserta Didik Menuntut Ilmu Dalam Kitab Al-Gunyah Li Ṭālibi Ṭarīq Al-Haqqi 'Azza Wa Jallā Karya Syekh Abdul Qadir Al-Jailani. (*Doctoral Dissertation, Universitas Islam Negeri Sumatea Utara Medan*), 53–54.

Berman, E., & Wang, X. (2017). Essential statistics for public managers and policy analysts. CQ Press.

Broadhurst, R. (2020). Mindset Awal Siswa terhadap Pembelajaran Matematika yang Sulit dan Menakutkan. In *Managing Environments for Leisure and Recreation* (Vol. 1, Issue 2, pp. 373–377). https://doi.org/10.4324/9780203457306-42

Budhiarti, A. L. (2009). Intensitas terkena bullying ditinjau dari tipe kepribadian ekstrovert dan introvert.

Coloroso, B. (2006). Stop bullying (memutus rantai kekerasan anak dari pra sekolah hingga SMU. *Jakarta: PT. Serambi Ilmu Semesta*.

Hadiat, H. L., & Karyati, K. (2019). Hubungan kemampuan koneksi matematika, rasa ingin tahu dan self-efficacy dengan kemampuan penalaran matematika. *Jurnal Riset Pendidikan Matematika*, 6(2), 200–210. https://doi.org/10.21831/jrpm.v6i2.26552

Jaen, M. C. A., & Baccay, E. S. (2016). Curiosity, Motivation, Attitude, Gender, and Mathematics Performance. *The Normal Lights*, *10*(2), 89–103.

Kamid, K., Huda, N., Syafmen, W., Sufri, S., & Sofnidar, S. (2021). The relationship between students' mathematical disposition and their learning outcomes. *Journal of Education and*

Learning (EduLearn), 15(3), 376–382. https://doi.org/10.11591/edulearn.v15i3.17604

Kurniawan, Y., & Sudrajat, A. (2020). Peran Teman Sebaya dalam Pembentukan Karakter Siswa MTs (Madrasah Tsanawiyah). *IAIN Tulungagung*, 1–12.

Kusumawati, E., & Irwanto, R. A. (2016). Penerapan Metode Pembelajaran Drill untuk Meningkatkan Kemampuan Pemecahan Masalah Matematis Siswa Kelas VIII SMP. *EDU-MAT: Jurnal Pendidikan Matematika*, 4(1), 49–57. https://doi.org/10.20527/edumat.v4i1.2289

Maharani, R. (2018). Kontribusi Kecerdasan Spiritual Dan Kecerdasan Matematis Logis Terhadap Penyelesaian Masalah Pembuktian Dan Kecemasan Matematika. *INSPIRAMATIKA - Jurnal Inovasi Pendidikan Dan Pembelajaran Matematika*, 4(1), 89–101.

Latifah, U. H., & Widjajanti, D. B. (2017). Pengembangan bahan ajar statistika dan peluang berbasis multiple intelligences berorientasi pada prestasi, pemecahan masalah, dan rasa ingin tahu. *Jurnal Riset Pendidikan Matematika*, 4(2), 176. https://doi.org/10.21831/jrpm.v4i2.13083

Muzdalifah, M. (2020). Bullying. *AL-MAHYRA* (Jurnal Penelitian Dan Pengembangan Keilmuan), 1, 50–65.

Na'imah, N., Komalasari, G., & Wahyuni, E. (2016). Gambaran Permasalahan Sosial Mahasiswa Universitas Negeri Jakarta (Survei Terhadap Mahasiswa Strata 1 Angkatan 2013-2015). *Insight: Jurnal Bimbingan Konseling*, 5(1), 58. Https://Doi.Org/10.21009/Insight.051.09

Nehru, N., & Irianti, E. (2020). Analisis Hubungan Rasa Ingin Tahu dengan Hasil Belajar. *Jurnal Pembangunan Pendidikan: Fondasi Dan Aplikasi*, 7(1), 53–59. https://doi.org/10.21831/jppfa.v7i1.25234

Pardede, J. A., Huda, A., & Simamora, M. (2021). Verbals Bullying Related To Self-Esteem. *Jendela Nursing Journal*, 5(1), 16–22.

Peterson, E. G., & Cohen, J. (2019). A Case for Domain-Specific Curiosity in Mathematics. *Educational Psychology Review*, *31*(4), 807–832. https://doi.org/10.1007/s10648-019-09501-4

Putri, S. O., & Silalahi, B. R. (2017). Gambaran Perilaku Bullying Pada Mahasiswa Umn Alwashliyah. *JURNAL EDUKASI: Jurnal Bimbingan Konseling*, *3*(2), 146. https://doi.org/10.22373/je.v3i2.3092

Rahmah, N. (2018). Hakikat Pendidikan Matematika. *Al-Khwarizmi: Jurnal Pendidikan Matematika Dan Ilmu Pengetahuan Alam*, *I*(2), 1–10. https://doi.org/10.24256/jpmipa.v1i2.88

Rahmaniyah, K. R., Suhadianto, S., & Pratikto, H. (2020). Perilaku Bullying Pada Mahasiswa: Menelisik Pengaruh Harga Diri dan Konformitas. *Sukma: Jurnal Penelitian Psikologi*, *1*(01), 1–9.

Ramadhanti, R., & Hidayat, M. T. (2022). Strategi Guru dalam Mengatasi Perilaku Bullying Siswa di Sekolah Dasar. *Jurnal Basicedu*, 6(3), 4566–4573. https://doi.org/10.31004/basicedu.v6i3.2892

Retnawati, H. (2017). Diktat Kuliah: Statistika Lanjut. UNY.

Romadhoni, M. T. B., Heru, M. J. A., Rofiqi, A., Hasanah, Z. W., & Yani, V. A. (2023).

Pengaruh Perilaku Bullying Terhadap Interaksi Sosial Pada Remaja. *Jurnal Keperawatan Profesional*, 11(1), 165–189. https://doi.org/10.33650/jkp.v11i1.5545

Schermelleh-Engel, K., Moosbrugger, H., & Müller, H. (2003). Evaluating the fit of structural equation models: Tests of significance and descriptive goodness-of-fit measures. *MPR-Online*, 8(May), 23–74.

Shaputra, M. (2023). Strategi Guru Dalam Mengatasi Kenakalan Siswa Berbasis Kedisiplinan Di SDN 32 Kota Bengkulu. *Angewandte Chemie International Edition*, 6(11), 951–952.

Simbolon, M. (2024). Perilaku Bullying pada Mahasiswa Berasrama. *JURNAL PSIKOLOGI*, *39*(2), 223–243. https://doi.org/10.5040/9798216005261.ch-004

Sthephani, A., & Yolanda, F. (2021). Analisis pada Penyelesaian Analisis Kompleks: Curiosity Attitude Mahasiswa. *ANARGYA: Jurnal Ilmiah Pendidikan Matematika*, 4(1), 11–16. https://doi.org/10.24176/anargya.v4i1.6007

Subianto, J. (2013). Peran Keluarga, Sekolah, dan Masyarakat dalam Pembentukan Karakter Berkualitas. *Edukasi: Jurnal Penelitian Pendidikan Islam*, 8(2), 331–354.

Sumanik, N. B., Nurvitasari, E., & Siregar, L. F. (2021). Analisis Profil Kemampuan Literasi Sains Mahasiswa Calon Guru Pendidikan Kimia. *Quantum: Jurnal Inovasi Pendidikan Sains*, 12(1), 22. https://doi.org/10.20527/quantum.v12i1.10215

Sumartini, T. S. (2019). Peningkatan Mathematical Knowledge For Teaching Dan Beliefs Mahasiswa Calon Guru Matematika Melalui Pembelajaran Berbasis Masalah Pedagogis. *Jurnal Pendidikan Matematika Raflesia*, 06(03), 82–103.

Susilo, Y., & Khabibah, S. (2010). Peningkatan motivasi belajar siswa melalui model pembelajaran kooperatif Tipe Numbered Head Together (NHT) materi ajar perbandingan dan fungsi trigonometri pada siswa kelas X. *MATHEdunesa*, 2, 1.

Wahani, E. T., Isroini, S. P., & Setyawan, A. (2022). Pengaruh bullying terhadap kesehatan masyarakat. *Educurio*, *I*(1), 198–203.

Wicaksana, A., & Rachman, T. (2018). Studi Fenomenologi Dampak Komunikasi Interpersonal Terhadap Kepercayaan Diri Siswa di MTs Al-Falah Tlanakan Pamekasan. *Angewandte Chemie International Edition*, 6(11), 951–952., 3(1), 10–27.

Zakiyah, E. Z., Humaedi, S., & Santosa, M. B. (2017). Faktor Yang Mempengaruhi Remaja Dalam Melakukan Bullying. *Prosiding Penelitian Dan Pengabdian Kepada Masyarakat*, 4(2), 324–330. https://doi.org/10.24198/jppm.v4i2.14352

Zetriuslita, Z. (2016). Profil Sikap Ilmiah Rasa Ingin Tahu (Curiosity) Matematis Mahasiswa. *Jurnal Ilmu Pendidikan (JIP) STKIP Kusuma Negara Jakarta*, 8(1), 41–46.