Perbedaan Struktur Morfologi, Anatomi, Fisiologi, dan Kandungan Fitokimia Daun Aur-Aur (Commelina Diffusa) pada Intensitas Cahaya Berbeda di Embung Leuwi Padjadjaran
Keywords:
C. diffusa, light intensities, plant adaptation, secondary metabolitesAbstract
Commelina diffusa (family Commelinaceae) contains various secondary metabolites with potential antimicrobial and antioxidant properties. The production of these compounds is influenced by environmental factors, exceptionally light intensity, which also plays a role in determining the plant’s morphological and anatomical characteristics. This study aims to analyze differences in leaf morphology, stomatal anatomical structure, chlorophyll content, and phytochemical compounds in C. diffusa leaves growing in two locations with different light conditions at Embung Leuwi Padjadjaran, Sumedang. A descriptive method was used to examine leaf morphology, stomatal anatomy, chlorophyll content, and phytochemical compounds of C. diffusa in shaded and unshaded locations. The results showed that leaf morphology was relatively similar in both locations, but the leaf surface area was more significant in unshaded conditions (8,33 cm²). The stomata were hexacytic type with higher stomatal density in the shaded condition (591,082 cell/mm²) and a higher chlorophyll content (37,73 CCI). The result of Phytochemical analysis confirmed the presence of alkaloids, flavonoids, saponins, tannins, and quinones, which were relatively higher in unshaded conditions.
References
Akbar, M. K., Hajrah, H., & Sastyarina, Y. (2022). Identifikasi Metabolit Sekunder Air Seduhan Daun Kelor (Moringa oleifera Lam.) dan Bawang Dayak (Sisyrinchium palmifolium L.) yang Berpotensi sebagai Inhibitor α-Glukosidase. Proceeding of Mulawarman Pharmaceuticals Conferences, 15, 116–121. https://doi.org/10.25026/mpc.v15i1.627
Andika, E. D., Kartijono, N. E., & Rahayu, E. S. (2017). Struktur dan Komposisi Tumbuhan pada Lantai Hutan Jati di Kawasan RPH Bogorejo BKPH Tanggel Blora. Life Science, 6(1), 24–33.
Ardiansyah, M., Nugroho, B., & Sa’diyah, K. (2022). Estimasi Kadar Klorofil dan Kadar N Daun Jagung Menggunakan Chlorophyll Content Index. Jurnal Ilmu Tanah Dan Lingkungan, 24(2), 53–61. https://doi.org/10.29244/jitl.24.2.53-61
Beneragama, C., & Goto, K. (2011). Chlorophyll a:b Ratio Increases Under Low-light in “Shade-tolerant” Euglena gracilis. Tropical Agricultural Research, 22(1), 12. https://doi.org/10.4038/tar.v22i1.2666
Borbély, P., Gasperl, A., Pálmai, T., Ahres, M., Asghar, M. A., Galiba, G., Müller, M., & Kocsy, G. (2022). Light Intensity and Spectrum Dependent Redox Regulation of Plant Metabolism. Antioxidants, 11(7), 1311. https://doi.org/10.3390/antiox11071311
Cahyaningsih, R., Phillips, J., Magos Brehm, J., Gaisberger, H., & Maxted, N. (2021). Climate Change Impact on Medicinal Plants in Indonesia. Global Ecology and Conservation, 30(2021), 1–13. https://doi.org/10.1016/j.gecco.2021.e01752
Cawood, M. E., Allemann, I., & Allemann, J. (2018). Impact of Temperature Stress on Secondary Metabolite Profile and Phytotoxicity of Amaranthus cruentus L. Leaf Extracts. Acta Agriculturae Slovenica, 111(3), 609–620. https://doi.org/10.14720/aas.2018.111.3.09
Dehariya, P., Kataria, S., Guruprasad, K. N., & Pandey, G. P. (2018). Saponin Synthesis and Cotton Growth is Antagonistically Regulated by Solar UV-B Radiation. Journal of Cotton Research, 1(1), 1–11. https://doi.org/10.1186/s42397-018-0014-x
Dewi, F. A., Widyasunu, P., & Maryanto, J. (2021). Distribusi Unsur Hara Kalium Tanah dan Kadarnya pada Tanaman Padi Sawah di Wilayah Sub Das Serayu Hilir Kecamatan Sampang Kabupaten Cilacap. Proceedings Series on Physical & Formal Sciences, 2, 117–123. https://doi.org/10.30595/pspfs.v2i.178
Ekeke, C., & Ogazie, C. A. (2018). Phytochemical Study on Commelina diffusa Burn. F. Subsp. Diffusa J. K. Morton and Commelina erecta L. (Commelinaceae). Nigerian Journal of Life Science, 8(1), 74–85. https://www.researchgate.net/publication/331374771
Fan, X.-X., Xu, Z.-G., Liu, X.-Y., Tang, C.-M., Wang, L.-W., & Han, X. (2013). Effects of Light Intensity on the Growth and Leaf Development of Young Tomato Plants Grown Under a Combination of Red and Blue Light. Scientia Horticulturae, 153, 50–55. https://doi.org/10.1016/j.scienta.2013.01.017
Fanourakis, D., Hyldgaard, B., Giday, H., Aulik, I., Bouranis, D., Körner, O., & Ottosen, C.-O. (2019). Stomatal Anatomy and Closing Ability is Affected by Supplementary Light Intensity in Rose (Rosa hybrida L.). Horticultural Science, 46(2), 81–89. https://doi.org/10.17221/144/2017-HORTSCI
Ferreira, S. D., Salvalaggio, A. C., Moratelli, G., Vasconcelos, E. D., & Costa, N. V. (2016). Commelina Species Control with Desiccants Alone and in Mixtures. Planta Daninha, 1–8.
Freitas, N. M., Freitas, F. C. L., Furtado, I. F., Teixeria, M. F. F., & Silva, V. F. (2018). Herbicide Mixtures to Control Dayflowers and Drift Effect on Coffee Cultures. Planta Daninha, 36(0), 1–9. https://doi.org/10.1590/s0100-83582018360100047
Hamidy, A. N., Sudarti, & Yushardi. (2021). Analisis Perubahan Suhu Lingkungan Terhadap Kenyamanan Masyarakat di Desa Sumber Tengah. Jurnal Pembelajaran Fisika, 10(2), 70–76.
Hansen, A. H., Jonasson, S., Michelsen, A., & Julkunen-Tiitto, R. (2006). Long-term Experimental Warming, Shading and Nutrient Addition Affect the Concentration of Phenolic Compounds in Arctic-alpine Deciduous and Evergreen Dwarf Shrubs. Oecologia, 147(1), 1–11. https://doi.org/10.1007/s00442-005-0233-y
Hashim, M., Ahmad, B., Drouet, S., Hano, C., Abbasi, B. H., & Anjum, S. (2021). Comparative Effects of Different Light Sources on the Production of Key Secondary Metabolites in Plants In Vitro Cultures. Plants, 10(8), 1521. https://doi.org/10.3390/plants10081521
Hofland-Zijlstra, J. D., & Berendse, F. (2009). The Effect of Nutrient Supply and Light Intensity on Tannins and Mycorrhizal Colonisation in Dutch Heathland Ecosystems. Plant Ecology, 201(2), 661–675. https://doi.org/10.1007/s11258-008-9554-3
Idris, A., Linatoc, A. C., & Bakar, M. F. B. A. (2019). Effect of Light Intensity on the Photosynthesis and Stomatal Density of Selected Plant Species of Gunung Ledang, Johor. Malays. Appl. Biol., 48(3), 133–140.
Irakiza, R., Darius, A., Arnold, W., Samuel, M., Paul, M., & Paul, K. (2022). Environmental and Management Factors That Influence Commelina Species in Selected Agro-Ecological Zones in Western Kenya. American Journal of Plant Sciences, 13(06), 884–911. https://doi.org/10.4236/ajps.2022.136059
Kamble, S. (2019). Nutraceutical Investigations of Commelina diffusa Burm. F. Leaves- A Popular Wild Vegetable. Plantae Scientia, 2(3), 34–39. https://doi.org/10.32439/ps.v2i3.34-39
Kusman, H. N., Rusdinar, A., & Darlis, D. (2022). Weather Station Monitoring System In Agriculture Based On Iot. E-Proceeding of Engineering, 9(5), 2468.
Lanoue, J., Leonardos, E. D., & Grodzinski, B. (2018). Effects of Light Quality and Intensity on Diurnal Patterns and Rates of Photo-Assimilate Translocation and Transpiration in Tomato Leaves. Frontiers in Plant Science, 9. https://doi.org/10.3389/fpls.2018.00756
Li, A., Li, S., Wu, X., Zhang, J., He, A., Zhao, G., & Yang, X. (2016). Effect of Light Intensity on Leaf Photosynthetic Characteristics and Accumulation of Flavonoids in Lithocarpus litseifolius (Hance) Chun. (Fagaceae). Open Journal of Forestry, 06(05), 445–459. https://doi.org/10.4236/ojf.2016.65034
Liu, W., Hsu, Y.-Y., Tang, J.-Y., Cheng, Y.-B., Chuang, Y.-T., Jeng, J.-H., Yen, C.-H., & Chang, H.-W. (2022). Methanol Extract of Commelina Plant Inhibits Oral Cancer Cell Proliferation. Antioxidants (Basel, Switzerland), 11(9). https://doi.org/10.3390/antiox11091813
Lu, D., Wang, G. G., Yan, Q., Gao, T., & Zhu, J. (2018). Effects of Gap Size and Within-gap Position on Seedling Growth and Biomass Allocation: Is the Gap Partitioning Hypothesis Applicable to the Temperate Secondary Forest Ecosystems in Northeast China? Forest Ecology and Management, 429, 351–362. https://doi.org/10.1016/j.foreco.2018.07.031
Ma, Z., Li, S., Zhang, M., Jiang, S., & Xiao, Y. (2010). Light Intensity Affects Growth, Photosynthetic Capability, and Total Flavonoid Accumulation of Anoectochilus Plants. HortScience, 45(6), 863–867.
Marantika, M., Hiariej, A., & Sahertian, D. E. (2021). Kerapatan dan Distribusi Stomata Daun Spesies Mangrove di Desa Negeri Lama Kota Ambon. Jurnal Ilmu Alam Dan Lingkungan, 12(1), 1–6. http://journal.unhas.ac.id
McKenzie, R. L., Aucamp, P. J., Bais, A. F., Björn, L. O., Ilyas, M., & Madronich, S. (2011). Ozone Depletion and Climate Change: Impacts on UV Radiation. Photochemical & Photobiological Sciences, 10(2), 182–198. https://doi.org/10.1039/c0pp90034f
Mohamed, S. J., Rihan, H. Z., Aljafer, N., & Fuller, M. P. (2021). The Impact of Light Spectrum and Intensity on the Growth, Physiology, and Antioxidant Activity of Lettuce (Lactuca sativa L.). Plants (Basel, Switzerland), 10(10). https://doi.org/10.3390/plants10102162
Moses, T., Papadopoulou, K. K., & Osbourn, A. (2014). Metabolic and Functional Diversity of Saponins, Biosynthetic Intermediates and Semi-synthetic Derivatives. Critical Reviews in Biochemistry and Molecular Biology, 49(6), 439–462. https://doi.org/10.3109/10409238.2014.953628
Muharrami, L. K., Munawaroh, F., Ersam, T., & Santoso, M. (2020). Phytochemical Screening of Ethanolic Extract: a Preliminary Test on Five Medicinal Plants on Bangkalan. Jurnal Pena Sains, 7(2), 96–103. https://doi.org/1921107/jps.v7i2.8722
Nasrin, M., Afroz, F., Sharmin, S., Rana, Md. S., & Sohrab, Md. H. (2019). Cytotoxic, Antimicrobial and Antioxidant Properties of Commelina diffusa Burm. F. Pharmacology & Pharmacy, 10(02), 82–93. https://doi.org/10.4236/pp.2019.102007
Novoa, M. C., & Arambarri, A. M. (2016). Importance of Anatomical Leaf-blade Features for the Characterization of Medicinal Commelinaceae in the Rio de la Plata Area (Argentina). Boletin de La Sociedad Argentina de Botanica, 51(3), 419–427. https://www.researchgate.net/publication/309661556
Prabowo, R., & Subantoro, R. (2018). Analisis Tanah Sebagai Indikator Tingkat Kesuburan Lahan Budidaya Pertanian di Kota Semarang. Jurnal Ilmiah Cendekia Eksakta, 2(2), 59–64.
Prima, A. A., Ahmed, R., Faruk, A., Zafroon, Z., & Dash, P. R. (2019). Pharmacological Importance of Commelina diffusa (Commelinaceae): a Review. International Journal of Life Sciences and Review, 5(1), 1–5.
Rahman, A. H. M. M., Sultana, M. Z., Rani, R., & Islam, A. K. M. R. (2015). Taxonomic Studies of the Family Commelinaceae at Rajshahi, Bangladesh. International Journal of Advanced Research, 3(5), 978–989. http://www.journalijar.com
Rahman, M. M., Mannan, M. A., Khatun, A., & Nijhu, R. S. (2021). Traditional Uses, Phytochemistry, and Pharmacology of Commelina diffusa Burm: An Updated Systematic Review. Journal of Pharmacognosy and Phytochemistry, 10(4), 53–59. www.phytojournal.com
Rahmawati, F., Bintang, M., Yang, A. J., & Damayanti, N. M. D. (2024). Potensi Antioksidan, Skrining, dan Identifikasi Metabolit Sekunder Ekstrak Beras Hitam (Oryza sativa L. Indica). Pro-Life: Jurnal Pendidikan Biologi, Biologi, Dan Ilmu Serumpun, 11(2), 129–141.
Rajkumar, G., Panambara, P. A. H. R., & Sanmugarajah, V. (2022). Comparative Analysis of Qualitative and Quantitative Phytochemical Evaluation of Selected Leaves of Medicinal Plants in Jaffna, Sri Lanka. Borneo Journal of Pharmacy, 5(2), 93–103. https://doi.org/10.33084/bjop.v5i2.3091
Raza, M. A., Feng, L. Y., Iqbal, N., Ahmed, M., Chen, Y. K., Khalid, M. H. Bin, Mohi Ud Din, A., Khan, A., Ijaz, W., Hussain, A., Jamil, M. A., Naeem, M., Bhutto, S. H., Ansar, M., Yang, F., & Yang, W. (2019). Growth and Development of Soybean Under Changing Light Environments in Relay Intercropping System. PeerJ, 7, e7262. https://doi.org/10.7717/peerj.7262
Ren, B., Cui, H., Camberato, J. J., Dong, S., Liu, P., Zhao, B., & Zhang, J. (2016). Effects of Shading on the Photosynthetic Characteristics and Mesophyll Cell Ultrastructure of Summer Maize. The Science of Nature, 103(7–8), 67. https://doi.org/10.1007/s00114-016-1392-x
Riar, M. K., Carley, D. S., Zhang, C., Schroeder-Moreno, M. S., Jordan, D. L., Webster, T. M., & Rufty, T. W. (2016). Environmental Influences on Growth and Reproduction of Invasive Commelina benghalensis. International Journal of Agronomy, 2016, 1–9. https://doi.org/10.1155/2016/5679249
Saadah, S., Tulandi, S. M., & Rohman, R. A. (2022). Phytochemical and Gas Chromatography-mass Spectrometry Profiling of Two Plant Parts of Sandoricum koetjape. Biodiversitas Journal of Biological Diversity, 23(12), 6199–6207. https://doi.org/10.13057/biodiv/d231214
Samrot, A. V, Mun, C. Y., Qi, N. X., Saigeetha, S., Wilson, S., Rajesh, V. V., Pachiyappan, S., Rajalakshmi, D., & Chinni, S. V. (2022). Plant Latex: Phytochemistry, Medicinal Properties and Aplication - A Review. Journal of Pharmaceutical Negative Results, 13(7), 5351–5375. https://doi.org/10.47750/pnr.2022.13.S07.658
Sari, K. R. T. P., Indrawati, E. M., & Nevita, A. P. (2020). Analisis Perbedaan Suhu dan Kelembaban Ruangan pada Kamar Berdinding Keramik. Jurnal Inkofar, 1(1), 5–11.
Serges, K. D., Laure, P. K. S., Legentil, N. M., Norbert, K., Albert, K., & SL, W. N. (2020). Hepatoprotective and Antioxidant Effects of Commelina diffusa Burm Extracts on Gentamicin-induced Liver Damage in Rats. Journal of Pharmaceutical and Biological Sciences, 8(1), 23–31. https://doi.org/10.18231/j.jpbs.2020.004
Setiawati, T., Ayalla, A., Nurzaman, M., & Mutaqin, A. Z. (2018). Influence of Light Intensity on Leaf Photosynthetic Traits and Alkaloid Content of Kiasahan (Tetracera scandens L.). IOP Conference Series: Earth and Environmental Science, 166, 012025. https://doi.org/10.1088/1755-1315/166/1/012025
Setiawati, T., & Syamsi, I. F. (2019). Karakteristik Stomata Berdasarkan Estimasi Waktu dan Perbedaan Intensitas Cahaya pada Daun Hibiscus tiliaceus Linn. di Pangandaran, Jawa Barat. Pro-Life: Jurnal Pendidikan Biologi, Biologi, Dan Ilmu Serumpun, 6(2), 148–159.
Sharkey, T. D., Bernacchi, C. J., Farquhar, G. D., & Singsaas, E. L. (2007). Fitting Photosynthetic Carbon Dioxide Response Curves for C3 Leaves. Plant, Cell & Environment, 30(9), 1035–1040. https://doi.org/10.1111/j.1365-3040.2007.01710.x
Sigalingging, R., & Ritonga, R. A. (2024). Study of Variations in Light Intensity and Length of Light Emitting Diode on the Growth and Productivity of Pak Choi Plants. IOP Conference Series: Earth and Environmental Science, 1413(1), 012126. https://doi.org/10.1088/1755-1315/1413/1/012126
Sihotang, L. (2017). Analisis Densitas Stomata Tanaman Antanan (Centella asiatica, L) dengan Perbedaan Intensitas Cahaya. Pro-Life: Jurnal Pendidikan Biologi, Biologi, Dan Ilmu Serumpun, 4(2), 329–338.
Sulistyarini, I., Sari, D. A., & Wicaksono, T. A. (2020). Skrining Fitokimia Senyawa Metabolit Sekunder Batang Buah Naga (Hylocereus polyrhizus). Jurnal Ilmiah Cendekia Eksakta, 5(1), 56–62.
Sutomo, S., Awaliyah, V. V., & Arnida, A. (2022). Ethnobotanical Study and Phytochemical Screening of Medicinal Plants Used by Local People in Belangian Village, South Kalimantan. Borneo Journal of Pharmacy, 5(1), 1–8. https://doi.org/10.33084/bjop.v5i1.2717
Suyatman, S. (2021). Menyelidiki Energi Pada Fotosintesis Tumbuhan. INKUIRI: Jurnal Pendidikan IPA, 9(2), 125–131. https://doi.org/10.20961/inkuiri.v9i2.50085
Tan, T., Li, S., Fan, Y., Wang, Z., Ali Raza, M., Shafiq, I., Wang, B., Wu, X., Yong, T., Wang, X., Wu, Y., Yang, F., & Yang, W. (2022). Far-red Light: A Regulator of Plant Morphology and Photosynthetic Capacity. The Crop Journal, 10(2), 300–309. https://doi.org/10.1016/j.cj.2021.06.007
Vijay, R., Drisya, V. M., Selta, D. R. F., Rathi, M. A., Gopalakrishnan, VK., Alkhalifah, D. H. M., & Hozzein, W. N. (2023). Synthesis and Characterization of Silver Nanomaterial from Aqueous Extract of Commelina forskaolii and its Potential Antimicrobial Activity Against Gram Negative Pathogens. Journal of King Saud University - Science, 35(1), 102373. https://doi.org/10.1016/j.jksus.2022.102373
Wardhani, R. A. P., & Supartono. (2015). Uji Aktivitas Antibakteri Ekstrak Kulit Buah Rambutan (Nephelium lappaceum L.) pada Bakteri. Indonesian Journal of Chemical Science, 4(1), 46–51. http://journal.unnes.ac.id/sju/index.php/ijcs
Yahiya, Y., Temeche, A., Delisho, F., & Abrar, K. (2024). Invitro Antibacterial, Antioxidant and XRF Analysis of Commelina Diffusa Burm. F.Plant Extracts. Journal of Diseases and Medicinal Plants, 10(3), 40–51. https://doi.org/10.11648/j.jdmp.20241003.11
Yang, F., Feng, L., Liu, Q., Wu, X., Fan, Y., Raza, M. A., Cheng, Y., Chen, J., Wang, X., Yong, T., Liu, W., Liu, J., Du, J., Shu, K., & Yang, W. (2018). Effect of Interactions Between Light Intensity and Red-to- Far-Red Ratio on the Photosynthesis of Soybean Leaves Under Shade Condition. Environmental and Experimental Botany, 150, 79–87. https://doi.org/10.1016/j.envexpbot.2018.03.008
Yi, Z., Cui, J., Fu, Y., & Liu, H. (2020). Effect of Different Light Intensity on Physiology, Antioxidant Capacity and Photosynthetic Characteristics on Wheat Seedlings Under High CO2 Concentration in a Closed Artificial Ecosystem. Photosynthesis Research, 144(1), 23–34. https://doi.org/10.1007/s11120-020-00726-x
Yustiningsih, M. (2019). Intensitas Cahaya dan Efisiensi Fotosintesis pada Tanaman Naungan dan Tanaman Terpapar Cahaya Langsung. Bioedu, 4(2), 43–48.
Zhang, J., Ge, J., Dayananda, B., & Li, J. (2022). Effect of Light Intensities on the Photosynthesis, Growth and Physiological Performances of Two Maple Species. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.999026
Zhao, J., Zhu, W.-H., & Hu, Q. (2001). Effects of Light and Plant Growth Regulators on the Biosynthesis of Vindoline and other Indole Alkaloids in Catharanthus roseus Callus Cultures. Plant Growth Regulation, 33(1), 43–49. https://doi.org/10.1023/A:1010722925013
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Seviana Esti Handayani, Rusdi Hasan, Asep Zainal Mutaqin

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.