Karakteristik Morfo-Anatomi serta Kandungan Klorofil dan Kandungan Fitokimia Tanaman Ketul (Bidens pilosa) pada Tempat dengan Intensitas Cahaya yang Berbeda di Arboretum Universitas Padjadjaran
Abstract
Bidens pilosa is a plant known for its secondary metabolites with therapeutic properties. This study aimed to examine the effects of different light intensities on the morphology, anatomy, chlorophyll content, and secondary metabolite production of B. pilosa in the Arboretum of Universitas Padjadjaran. The shaded and unshaded area had light intensities of 5828 and 32768 lux, respectively. Leaf samples were collected from three different individuals in each area, with three leaves taken per plant. Morphological and anatomical traits such as leaf thickness, leaf area, stomatal density, and chlorophyll content were observed, along with secondary metabolite content. Results showed that plants in the shaded area had thinner leaves (0,19 mm) and lower stomatal density (275,16 cells/mm2) but a larger leaf area (4 cm2) and higher chlorophyll content (29,33 CCI) compared to leaves in the unshaded area, which had thicker leaves (0,213 mm), higher stomatal density (310,83 cells/mm2), a smaller leaf area (2,33 cm2), and lower chlorophyll content (27,27 CCI). Alkaloids, flavonoids, tannins, and saponins were detected in both conditions, with a higher level of alkaloid and tannin in unshaded plants. These findings enhance our understanding of the relationship between light intensity influences plant morphology, photosynthesis, and secondary metabolite production, with potential applications in cultivation and medicinal use.
References
Abdel-Ghany, R. H., Barakat, W. M., Shahat, A. A., Abd-Allah, W. E.-S., & Ali, E. A. (2016). In vitro and in vivo hepatoprotective activity of extracts of aerial parts of Bidens pilosa L (Asteraceae). Tropical Journal of Pharmaceutical Research, 15(11), 2371–2381. https://doi.org/10.4314/tjpr.v15i11.11
Ali, M. C., Chen, J., Zhang, H., Li, Z., Zhao, L., & Qiu, H. (2019). Effective extraction of flavonoids from Lycium barbarum L. fruits by deep eutectic solvents-based ultrasound-assisted extraction. Talanta, 203, 16–22. https://doi.org/10.1016/j.talanta.2019.05.012
Anggraeni, E. V., & Anam, K. (2016). Identifikasi Kandungan Kimia dan Uji Aktivitas Antimikroba Kulit Durian (Durio zibethinus Murr.). Jurnal Kimia Sains Dan Aplikasi, 19(3), 87–93.
Ansari, P., Flatt, P. R., Harriott, P., & Abdel-Wahab, Y. H. A. (2020). Evaluation of the Antidiabetic and Insulin Releasing Effects of A. squamosa, Including Isolation and Characterization of Active Phytochemicals. Plants, 9(10), 1348. https://doi.org/10.3390/plants9101348
Ash-shiddiqqiyah, A. N., Khotimperwati, L., & Murningsih. (2021). Variasi Morfologis Bidens di Kota Semarang Berdasarkan Ketinggian Tempat. NICHE Journal of Tropical Biology, 4(1), 23–32.
Ashraf, M. A., Iqbal, M., Rasheed, R., Hussain, I., Riaz, M., & Arif, M. S. (2018). Environmental Stress and Secondary Metabolites in Plants. In Plant Metabolites and Regulation Under Environmental Stress (pp. 153–167). Elsevier. https://doi.org/10.1016/B978-0-12-812689-9.00008-X
Cahyaningsih, R., Magos Brehm, J., & Maxted, N. (2021). Setting the priority medicinal plants for conservation in Indonesia. Genetic Resources and Crop Evolution, 68(5), 2019–2050. https://doi.org/10.1007/s10722-021-01115-6
Damar, H., Ziadi, N., Lafond, J., & Parent, L. (2020). Potassium transformation in clay soil with contrasting K budgets in long‐term experiment. Agronomy Journal, 112(6), 5180–5192. https://doi.org/10.1002/agj2.20379
Darko, E., Hamow, K. A., Marček, T., Dernovics, M., Ahres, M., & Galiba, G. (2022). Modulated Light Dependence of Growth, Flowering, and the Accumulation of Secondary Metabolites in Chilli. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.801656
Devi, S. S., & Mehendale, H. M. (2014). Quinone. In Encyclopedia of Toxicology (pp. 26–28). Elsevier. https://doi.org/10.1016/B978-0-12-386454-3.00350-X
Dewi, R., Nugrayani, D., Sanjayasari, D., & Endrawati, H. (2016). Potensi Kandungan Pigmen Florogil a dan b Beberapa Rumput Laut Genus Gracilaria: Optimalisasi Kandungan Karbohidrat. Jurnal Harpodon Borneo, 9(1), 86–92.
Dong, X., Lin, H., Wang, F., Shi, S., Ma, J., & He, X. (2025). Effects of Increasing CO2 Concentration on Crop Growth and Soil Ammonia-Oxidizing Microorganisms in a Fababean (Vicia faba L.) and Wheat (Triticum aestivum Yunmai) Intercropping System. Plants, 14(4), 516. https://doi.org/10.3390/plants14040516
Effendy, S., Neldi, V., & Ramadhani, P. (2024). Penetapan Kadar Flavonoid Total dan Fenol Total Serta Uji Aktivitas Antioksidan dari Ekstrak Etanol Bunga Rosella (Hibiscus sabdariffa L.). Jurnal Farmasi Higea, 16(1), 72–80.
El-Beltagi, H. S., El-Sayed, S. M., Abdelhamid, A. N., Hassan, K. M., Elshalakany, W. A., Nossier, M. I., Alabdallah, N. M., Al-Harbi, N. A., Al-Qahtani, S. M., Darwish, D. B. E., Abbas, Z. K., & Ibrahim, H. A. (2023). Potentiating Biosynthesis of Alkaloids and Polyphenolic Substances in Catharanthus roseus Plant Using ĸ-Carrageenan. Molecules, 28(8), 3642. https://doi.org/10.3390/molecules28083642
Esmaeili, S., Aliniaeifard, S., Dianati Daylami, S., Karimi, S., Shomali, A., Didaran, F., Telesiński, A., Sierka, E., & Kalaji, H. M. (2022). Elevated light intensity compensates for nitrogen deficiency during chrysanthemum growth by improving water and nitrogen use efficiency. Scientific Reports, 12(1), 10002. https://doi.org/10.1038/s41598-022-14163-4
Estell, R. E., Fredrickson, E. L., & James, D. K. (2016). Effect of light intensity and wavelength on concentration of plant secondary metabolites in the leaves of Flourensia cernua. Biochemical Systematics and Ecology, 65, 108–114. https://doi.org/10.1016/j.bse.2016.02.019
Etika, M., & Giyatmi. (2020). Pengaruh Suhu dan Lama Pengeringan Terhadap Mutu Teh Daun Ketul (Bidens pilosa L.). Jurnal Teknologi Pangan Dan Kesehatan, 2(1), 13–25.
F. Pompelli, M., M. Pompelli, G., F. M. de Oliveira, A., & C. Antunes, W. (2013). The effect of light and nitrogen availability on the caffeine, theophylline and allantoin contents in the leaves of Coffea arabica L. AIMS Environmental Science, 1(1), 1–11. https://doi.org/10.3934/environsci.2013.1.1
Fauziah, A., Izzah, A. S., & Zahrotul. (2019). Analisis Tipe Stomata Pada Daun Tumbuhan Menggunakan Metode Stomatal Printing. Prosiding Seminar NasionalHAYATIVIITahun2019, 34–39.
Francis, B., & Gilman, R. T. (2019). Light intensity affects leaf morphology in a wild population of Adenostyles alliariae (Asteraceae). Italian Botanist, 8, 35–45. https://doi.org/10.3897/italianbotanist.8.39393
Gang, C., Suping, W., Xiang, H., Juan, H., Lei, D., Lihong, Z., & Lixia, Y. (2015). Environmental factors affecting growth and development of Banlangen (Radix Isatidis) in China. African Journal of Plant Science, 9(11), 421–426. https://doi.org/10.5897/AJPS2015.1266
Ghorbanzadeh, P., Aliniaeifard, S., Esmaeili, M., Mashal, M., Azadegan, B., & Seif, M. (2021). Dependency of Growth, Water Use Efficiency, Chlorophyll Fluorescence, and Stomatal Characteristics of Lettuce Plants to Light Intensity. Journal of Plant Growth Regulation, 40(5), 2191–2207. https://doi.org/10.1007/s00344-020-10269-z
Goudoum, A., Abdou, A. B., Ngamo, L. S. T., Ngassoum, M. B., & Mbofung, C. M. F. (2016). Antioxidant activities of essential oil of Bidens pilosa (Linn. Var. Radita) used for the preservation of food qualities in North Cameroon. Food Science & Nutrition, 4(5), 671–678. https://doi.org/10.1002/fsn3.330
Handayani, R., Rustamsyah, A., Perdana, F., Ihsan, S., & Suwandi, D. W. (2017). Studi Pendahuluan Fitokimia Tanaman Koleksi Arboretum Legok Pulus Garut. Journal of Tropical Pharmacy and Chemistry, 4(2), 103–107.
Harrison, E. L., Cubas, L. A., Gray, J. E., & Hepworth, C. (2020). The influence of stomatal morphology and distribution on photosynthetic gas exchange. The Plant Journal, 101(4), 768–779. https://doi.org/10.1111/tpj.14560
Ikalinus, R., Widyastuti, S. K., & Setiasih, N. L. E. (2015). Skrining Fitokimia Ekstrak Etanol Kulit Batang Kelor (Moringa oleifera). Indonesia Medicus Veterinus, 4(1), 71–79.
Jang, Y. A., & Kim, S. G. (2019). Inhibitory Activity of Blueberries on UVB induced Oxidative Stress and Matrix Metalloproteinase Expression in Human Skin Fibroblasts. Journal of Life Science, 29(12), 1321–1328. https://doi.org/https://doi.org/10.5352/JLS.2019.29.12.1321
Juhaeti, T., Setyowati, N., & Syarif, F. (2020). The chlorophyll contents and growth performances of West Java (Indonesia) jobtears (Coix lacryma-jobi) accessions under low light intensity conditions. Biodiversitas Journal of Biological Diversity, 21(11). https://doi.org/10.13057/biodiv/d211124
Kato-Noguchi, H., & Kurniadie, D. (2024). The Invasive Mechanisms of the Noxious Alien Plant Species Bidens pilosa. Plants, 13(3), 356. https://doi.org/10.3390/plants13030356
Kumari, M. (2015). Screening of Potential Sources of Tannin and Its Therapeutic Application. International Journal of Nutrition and Food Sciences, 4(2), 26. https://doi.org/10.11648/j.ijnfs.s.2015040201.15
Kurnia, K. A., Widyatamaka, S. Q., Paujiah, S., & Prayuda, M. E. (2021). Isolasi Senyawa Turunan Kuinon dari Tanaman. Syntax Idea, 3(6), 1361–1369.
Li, A., Li, S., Wu, X., Zhang, J., He, A., Zhao, G., & Yang, X. (2016). Effect of Light Intensity on Leaf Photosynthetic Characteristics and Accumulation of Flavonoids in <i>Lithocarpus litseifolius</i> (Hance) Chun. (Fagaceae). Open Journal of Forestry, 06(05), 445–459. https://doi.org/10.4236/ojf.2016.65034
Li, Y., Kong, D., Fu, Y., Sussman, M. R., & Wu, H. (2020). The effect of developmental and environmental factors on secondary metabolites in medicinal plants. Plant Physiology and Biochemistry, 148, 80–89. https://doi.org/10.1016/j.plaphy.2020.01.006
Liang, Y.-C., Lin, C.-J., Yang, C.-Y., Chen, Y.-H., Yang, M.-T., Chou, F.-S., Yang, W.-C., & Chang, C. L.-T. (2020). Toxicity study of Bidens pilosa in animals. Journal of Traditional and Complementary Medicine, 10(2), 150–157. https://doi.org/10.1016/j.jtcme.2019.04.002
Liu, C., Liu, Y., Lu, Y., Liao, Y., Nie, J., Yuan, X., & Chen, F. (2019). Use of a leaf chlorophyll content index to improve the prediction of above-ground biomass and productivity. PeerJ, 6, e6240. https://doi.org/10.7717/peerj.6240
Ma, X., Song, L., Yu, W., Hu, Y., Liu, Y., Wu, J., & Ying, Y. (2015). Growth, physiological, and biochemical responsses of Camptotheca acuminata seedlings to different light environments. Frontiers in Plant Science, 6(321). https://doi.org/10.3389/fpls.2015.00321
Maghfiroh, J. (2017). Pengaruh Intensitas Cahaya Terhadap Pertumbuhan Tanaman. Prosiding Seminar Nasional Pendidikan Biologi Dan Biologi. http://seminar.uny.ac.id/sembiouny2017/sites/seminar.uny.ac.id.sembiouny2017/files/B 7a.pdf
Miao, C., Yang, S., Xu, J., Wang, H., Zhang, Y., Cui, J., Zhang, H., Jin, H., Lu, P., He, L., Yu, J., Zhou, Q., & Ding, X. (2023). Effects of Light Intensity on Growth and Quality of Lettuce and Spinach Cultivars in a Plant Factory. Plants, 12(18), 3337. https://doi.org/10.3390/plants12183337
Morelli, L., Paulišić, S., Qin, W., Iglesias-Sanchez, A., Roig-Villanova, I., Florez-Sarasa, I., Rodriguez-Concepcion, M., & Martinez-Garcia, J. F. (2021). Light signals generated by vegetation shade facilitate acclimation to low light in shade-avoider plants. Plant Physiology, 186(4), 2137–2151. https://doi.org/10.1093/plphys/kiab206
Morris, P., Carter, E. B., Hauck, B., Lanot, A., Theodorou, M. K., & Allison, G. (2021). Responsses of Lotus corniculatus to environmental change 3: The sensitivity of phenolic accumulation to growth temperature and light intensity and effects on tissue digestibility. Planta, 253(2), 35. https://doi.org/10.1007/s00425-020-03524-w
Mtenga, D. V., & Ripanda, A. S. (2022). A review on the potential of underutilized Blackjack (Biden Pilosa) naturally occurring in sub-Saharan Africa. Heliyon, 8, e09586. https://doi.org/10.1016/j.heliyon.2022.e09586
Mugford, S. T., & Osbourn, A. (2012). Saponin Synthesis and Function. In Isoprenoid Synthesis in Plants and Microorganisms (pp. 405–424). Springer New York. https://doi.org/10.1007/978-1-4614-4063-5_28
Nakibuule, M. K., Ntulume, I., Mwandah, D. C., Tibyangye, J., Bashir, A., Odoki, M., Okoche, D., Maniga, J. N., Emmanue, E., Kwizera, E., Richard, B., & Aliero, A. A. (2019). Anti-bacterial Activity of Crude Flavonoid Fraction from Bidens pilosa Leaves against Selected Chronic Wound Bacterial Pathogens. Journal of Complementary and Alternative Medical Research, 1–13. https://doi.org/10.9734/jocamr/2019/v8i130115
Nisyapuri, F. F., Iskandar, J., & Partasasmita, R. (2018). Studi Etnobotani Tumbuhan Obat di Desa Wonoharjo, Kabupaten Pangandaran, Jawa Barat. Prosiding Seminar Nasional Masyarakat Biodiversitas Indonesia, 4(2), 122–132. https://doi.org/10.13057/psnmbi/m040205
Nopsagiarti, T., Okalia, D., & Marliana, G. (2020). Analisis C-Organik, Nitrogen dan C/N Tanah pada Lahan Agrowisata Beken Jaya. Jurnal Agrosains Dan Teknologi, 5(1), 11–18.
Oktaviani, D., Yuniastuti, A., & Christijanti, W. (2021). Aktivitas Antioksidan dari Pati Umbi Gembili (Dioscorea esculenta L.) Pada Tikus Hiperkolestrolemia. Prosiding Semnas Biologi Ke-9 Tahun 2021, 172–177.
Pan, Y., Tang, S., Wei, C., & Li, X. (2017). Comparison of growth, photosynthesis and phenotypic plasticity between invasive and native Bidens species under different light and water conditions. Biodiversity Science, 25(12), 1257–1266. https://doi.org/10.17520/biods.2016366
Panche, A. N., Diwan, A. D., & Chandra, S. R. (2016). Flavonoids: an overview. Journal of Nutritional Science, 5, e47. https://doi.org/10.1017/jns.2016.41
Pang, Z., Chen, J., Wang, T., Gao, C., Li, Z., Guo, L., Xu, J., & Cheng, Y. (2021). Linking Plant Secondary Metabolites and Plant Microbiomes: A Review. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.621276
Pareira, M. S., Naikofi, K. I., Ndua, N. D. D., & Binsasi, Y. (2022). Penyuluhan dan Pelatihan Pembuatan Pupuk Organik Cair pada Kelompok Tani Bilubahan. Jurnal Altifani, 2(6), 627–633.
Qin, Y., Liu, X., Li, C., Chu, Q., Cheng, S., Su, L., Shao, D., Guo, X., He, Z., & Zhou, X. (2024). Effect of light intensity on celery growth and flavonoid synthesis. Frontiers in Plant Science, 14. https://doi.org/10.3389/fpls.2023.1326218
Reshi, Z. A., Ahmad, W., Lukatkin, A. S., & Javed, S. Bin. (2023). From Nature to Lab: A Review of Secondary Metabolite Biosynthetic Pathways, Environmental Influences, and In Vitro Approaches. Metabolites, 13(8), 895. https://doi.org/10.3390/metabo13080895
Rezai, S., Etemadi, N., Nikbakht, A., Yousefi, M., & Majidi, M. M. (2018). Effect of Light Intensity on Leaf Morphology, Photosynthetic Capacity, and Chlorophyll Content inSage (Salvia officinalis L.). Horticultural Science and Technology, 36(1), 46–57. https://doi.org/10.12972/kjhst.20180006
Rizki, & Leilani, I. (2017). Etnofarmakologi Tumbuhan Familia Rhizophoraceae oleh Masyarakat di Indonesia. Jurnal Biologi Dan Pendidikan Biologi, 3(1), 51–60.
Rukmana, A., Susilawati, H., & Galang. (2019). Pencatat pH Tanah Otomatis. Jurnal Penelitian Dan Pengembangan Teknik Elektro Telekomunikasi Indonesia, 10(1), 25–32.
Sakhonwasee, S., Tummachai, K., & Nimnoy, N. (2017). Influences of LED Light Quality and Intensity on Stomatal Behavior of Three Petunia Cultivars Grown in a Semi-closed System. Environment Control in Biology, 55(2), 93–103. https://doi.org/10.2525/ecb.55.93
Sakoda, K., Yamori, W., Shimada, T., Sugano, S. S., Hara-Nishimura, I., & Tanaka, Y. (2020). Higher Stomatal Density Improves Photosynthetic Induction and Biomass Production in Arabidopsis Under Fluctuating Light. Frontiers in Plant Science, 11. https://doi.org/10.3389/fpls.2020.589603
Salamah, N., & Ningsih, D. S. (2017). Total alkaloid content in various fractions of Tabernaemonata sphaerocarpa Bl. (Jembirit) leaves. IOP Conference Series: Materials Science and Engineering, 259, 012017. https://doi.org/10.1088/1757-899X/259/1/012017
Seko, M. H., Sabuna, A. C., & Ngginak, J. (2021). Ekstrak Etanol Daun Ajeran Sebagai Antibakteri Terhadap Staphylococcus aureus. The Journal of Biosciences, 7(1), 1–9. https://doi.org/https://doi.org/10.24114/jbio.v7i1.22671
Seniwaty, Raihanah, Nugraheni, I. K., & Umaningrum, D. (2009). Skrining Fitokimia dari Alang-Alang (Imperata cylindrica L. Beauv) dan Lidah Ular (Hedyotis Corymbosa L. Lamk). Sains Dan Terapan Kimia, 3(2), 124–133.
Septiani, G., Susanti, S., & Sucitra, F. (2021). Effect of Different Extraction Method on Total Flavonoid Contents of Sansevieria trifasciata P. Leaves Extract. Jurnal Farmasi Galenika (Galenika Journal of Pharmacy) (e-Journal), 7(2), 143–150. https://doi.org/10.22487/j24428744.2021.v7.i2.15573
Seran, L., Herak, R., & Luhe, A. (2021). Penyembuhan Penyakit Diare dan Infeksi Luka dengan Ekstrak Daun Ketul (Bidens pilosa L.). Open Journal Systems, 16(5), 6917–6931.
Setiawati, T, Ayalla, A., Nurzaman, M., & Mutaqin, A. Z. (2018). Influence of Light Intensity on Leaf Photosynthetic Traits and Alkaloid Content of Kiasahan ( Tetracera scandens L.). IOP Conference Series: Earth and Environmental Science, 166, 012025. https://doi.org/10.1088/1755-1315/166/1/012025
Setiawati, Tia, & Syamsi, I. F. (2019). Karakteristik Stomata Berdasarkan Estimasi Waktu dan Perbedaan Intensitas Cahaya Pada Daun Hibiscus tiliaceus Linn. di Pangandaran, Jawa Barat. Jurnal Pro-Life, 6(2), 148–159.
Shafiq, I., Hussain, S., Raza, M. A., Iqbal, N., Asghar, M. A., Raza, A., Fan, Y., Mumtaz, M., Shoaib, M., Ansar, M., Manaf, A., Yang, W., & Yang, F. (2021). Crop photosynthetic responsse to light quality and light intensity. Journal of Integrative Agriculture, 20(1), 4–23. https://doi.org/10.1016/S2095-3119(20)63227-0
Sihotang, L. (2017). Analisis Densitas Stomata Tanaman Antanan (Centella asiatica) dengan Perbedaan Intensitas Cahaya. Jurnal Pro-Life, 4(2), 329–338.
Soamole, H. H., Sanger, G., & Harikedua, S. D. (2018). Kandungan Fitokimia Ekstrak Etanol Rumput Laut Segar (Turbinaria sp., Gracilaria sp., dan Halimeda macroloba). Jurnal Media Teknologi Hasil Perikanan, 6(3), 94–98.
Szakiel, A., Pączkowski, C., & Henry, M. (2011). Influence of environmental abiotic factors on the content of saponins in plants. Phytochemistry Reviews, 10(4), 471–491. https://doi.org/10.1007/s11101-010-9177-x
Tang, W., Guo, H., Baskin, C. C., Xiong, W., Yang, C., Li, Z., Song, H., Wang, T., Yin, J., Wu, X., Miao, F., Zhong, S., Tao, Q., Zhao, Y., & Sun, J. (2022). Effect of Light Intensity on Morphology, Photosynthesis and Carbon Metabolism of Alfalfa (Medicago sativa) Seedlings. Plants, 11(13), 1688. https://doi.org/10.3390/plants11131688
Wakhidah, A. Z. (2020). Rumput Kebar (Biophytum umbraculum Welw): Pemanfaatannya di Indonesia, Fitokimia, dan Bioaktivitas. Jurnal Pro-Life, 7(2), 99–108. https://doi.org/https://doi.org/10.33541/pro-life.v7i2.1943
Wang, L. (2014). Physiological and Molecular Responsses to Variation of Light Intensity in Rubber Tree (Hevea brasiliensis Muell. Arg.). PLoS ONE, 9(2), e89514. https://doi.org/10.1371/journal.pone.0089514
Wang, R., Yan, W. B., Quan, G. M., Liu, S., & Zhang, J. E. (2017). Effects of light intensity on morphology and physiology of exotic invasive Bidens pilosa l. and non-invasive congener Bidens bipinnata L. Allelopathy Journal, 42(1), 157–168. https://doi.org/10.26651/2017-42-1-1113
Warnasih, S., & Hasanah, U. (2018). Phytochemical Characterization and Tannin Stability Test From Kluwek (Pangium edule Reinw). Journal of Science Innovare, 1(2), 44–49.
Widiastuti, L., Tohari, & Sulistyaningsih, E. (2004). Pengaruh Intensitas Cahaya dan Kadar Daminosida Terhadap Iklim Mikro dan Pertumbuhan Tanaman Krisan Dalam Pot. Ilmu Pertanian, 11(2), 35–42.
Xu, M. Y., Wu, K., Liu, Y., Liu, J., & Tang, Z. (2020). Effects of light intensity on the growth, photosynthetic characteristics, and secondary metabolites of Eleutherococcus senticosus Harms. Photosynthetica, 58(3), 881–889. https://doi.org/10.32615/ps.2020.045
Xuan, T. D., & Khanh, T. D. (2016). Chemistry and pharmacology of Bidens pilosa: an overview. Journal of Pharmaceutical Investigation, 46(2), 91–132. https://doi.org/10.1007/s40005-016-0231-6
Yao, X., Liu, X., Xu, Z., & Jiao, X. (2017). Effects of light intensity on leaf microstructure and growth of rape seedlings cultivated under a combination of red and blue LEDs. Journal of Integrative Agriculture, 16(1), 97–105. https://doi.org/10.1016/S2095-3119(16)61393-X
Zargoosh, Z., Ghavam, M., Bacchetta, G., & Tavili, A. (2019). Effects of ecological factors on the antioxidant potential and total phenol content of Scrophularia striata Boiss. Scientific Reports, 9(1), 16021. https://doi.org/10.1038/s41598-019-52605-8
Zhang, S., Zhang, L., Zou, H., Qiu, L., Zheng, Y., Yang, D., & Wang, Y. (2021). Effects of Light on Secondary Metabolite Biosynthesis in Medicinal Plants. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.781236
Zhao, Q., Dong, M., Li, M., Jin, L., & Paré, P. W. (2023). Light-Induced Flavonoid Biosynthesis in Sinopodophyllum hexandrum with High-Altitude Adaptation. Plants, 12(3), 575. https://doi.org/10.3390/plants12030575
Zhou, R., Su, W. H., Zhang, G. F., Zhang, Y. N., & Guo, X. R. (2016). Relationship between flavonoids and photoprotection in shade-developed Erigeron breviscapus transferred to sunlight. Photosynthetica, 54(2), 201–209. https://doi.org/10.1007/s11099-016-0074-4
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Karen Marcelline, Mohamad Nurzaman, Tia Setiawati

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.