Karakteristik Kalus dari Eksplan Batang Planlet Krisan (Chrysanthemum morifolium Ramat) pada Media dengan Konsentrasi 2,4-Dichlorophenoxyacetic Acid (2,4-D) dan 6-Benzylaminopurine (BAP) serta Kondisi Pencahayaan
Abstract
This research aimed to obtain the optimal concentration combination of 2,4-D and BAP growth regulators for inducing callus from the stem explant of Chrysanthemum (C. morifolium Ramat) in bright and dark conditions. Stem explants of chrysanthemum were grown in culture medium supplemented with various concentrations and combinations of 2,4-D and BAP under different lighting conditions for 45 days after culture. A laboratory-scale experimental method was used in this research using Completely Randomized Design (CRD). The observed parameters were induction time, percentage formation, size, fresh weight, dry weight, texture, color, and various respones generated by callus. All data were analyzed descriptively. The results showed that all concentrations and combinations of growth regulators could induce callus. In bright condition, the fastest callus induction time was 7 days after culture; most calli were dark green and dark brown colored with compact texture; the callus size was 1.36 cm; also, the highest dry weight generated by callus was 0.17 gram. Meanwhile, in dark conditions, the fastest callus induction time was 6 days after culture; most calli were light green and light brown colored with compact texture; the callus size was 1.18 cm; and the highest dry weight generated by callus was 0.15 gram.
References
Ali, H., Karsani, S. A., Othman, R., & Yaacob, J. S. (2018). Production of coloured callus in Orthosiphon stamineus Benth and antioxidant properties of the extracted pigments. Pigment & Resin Technology, 47(3), 196–207. DOI: 10.1108/PRT-01-2017-0009.
Ali, H. M., Khan, T., Khan, M. A., & Ullah, N. (2022). The multipotent thidiazuron: A mechanistic overview of its roles in callogenesis and other plant cultures in vitro. Biotechnology and Applied Biochemistry, 69(6), 2624–2640. DOI: https://doi.org/10.1002/bab.2311.
Andaryani, S., Samanhudi, S., & Yunus, A. (2022). Effect of BAP and 2,4-D on callus induction of Jatropha curcas in vitro. Cell Biology and Development, 3(2), 56–65. DOI: 10.13057/cellbioldev/v030202.
Anniasari, T. D., Putri, R. B. A., & Muliawati, E. S. (2016). Penggunaan BA dan NAA untuk Merangsang Pembentukan Tunas Lengkeng Dataran Rendah (Dimocarpus longan) Secara In Vitro. Jurnal Bioteknologi, 13(2), 43–53. DOI: 10.13057/biotek/c130201.
Ardhani, D. N., Maharijaya, A., & Megayani Sri Rahayu. (2024). Callus formation response from immature male flower explant of plantain banana (Musa acuminata x Musa balbisiana cv. Kepok) treated by 2,4-D and BAP. Jurnal Agronomi Indonesia (Indonesian Journal of Agronomy), 52(1), 101–109. DOI: 10.24831/jai.v52i1.49008.
Ariati, S. N., Waeniati, Muslimin, & Suwastika, I. N. (2012). Induksi Kalus Tanaman Kakao (Theobroma cacao L.) Pada Media MS Dengan Penambahan 2,4-D, BAP Dan Air Kelapa. Jurnal Natural Science Desember, 1(1), 74.
Astutik, M., Suhartanto, B., Umami, N., Suseno, N., & Haq, M. S. (2022). Auxin and Cytokinin Effect on In vitro Callus Induction of Maize (Zea mays L.) Srikandi Putih BT - Proceedings of the 6th International Seminar of Animal Nutrition and Feed Science (ISANFS 2021). 1–5. DOI: 10.2991/absr.k.220401.001.
Bajwa, M. N., Khanum, M., Zaman, G., Ullah, M. A., Farooq, U., Waqas, M., Ahmad, N., Hano, C., & Abbasi, B. H. (2023). Effect of Wide-Spectrum Monochromatic Lights on Growth, Phytochemistry, Nutraceuticals, and Antioxidant Potential of In Vitro Callus Cultures of Moringa oleifera. Molecules, 28(3). DOI: 10.3390/molecules28031497.
Bano, A. S., Khattak, A. M., Basit, A., Alam, M., Shah, S. T., Ahmad, N., Gilani, S. A. Q., Ullah, I., Anwar, S., & Mohamed, H. I. (2022). Callus Induction, Proliferation, Enhanced Secondary Metabolites Production and Antioxidants Activity of Salvia moorcroftiana L. as Influenced by Combinations of Auxin, Cytokinin and Melatonin. Brazilian Archives of Biology and Technology, 65, 1–16. DOI: 10.1590/1678-4324-2022210200.
Cavallaro, V., Pellegrino, A., Muleo, R., & Forgione, I. (2022). Light and Plant Growth Regulators on In Vitro Proliferation. Plants, 11(7), 844. DOI: 10.3390/plants11070844.
Cristian, F. B., Remalia, S. C., Sanda, R. B., Georgeta, S., & Oana, D. S. (2021). Effect of light quality on in vitro germination, seedling growth and photosynthetic pigments production in wheat (Triticum aestivum L.). African Journal of Biotechnology, 20(7), 300–307. DOI: 10.5897/ajb2021.17329.
D’nofrio, C., & Morini, S. (2002). Effects of light quality on induction and growth of MM106 apple callus cultures. Advances in Horticultural Science, 16(2), 47–52. http://www.jstor.org/stable/42882192
Dutta Gupta, S., & Agarwal, A. (2017). Influence of LED Lighting on In Vitro Plant Regeneration and Associated Cellular Redox Balance. In S. Dutta Gupta (Ed.), Light Emitting Diodes for Agriculture: Smart Lighting (pp. 273–303). Springer Singapore. DOI: 10.1007/978-981-10-5807-3_12.
Fan, C., Manivannan, A., & Wei, H. (2022). Light Quality-Mediated Influence of Morphogenesis in Micropropagated Horticultural Crops: A Comprehensive Overview. BioMed Research International, 2022(1), 4615079. DOI: https://doi.org/10.1155/2022/4615079.
Guo, G., & Jeong, B. R. (2021). Explant, Medium, and Plant Growth Regulator (PGR) Affect Induction and Proliferation of Callus in Abies koreana. In Forests (Vol. 12, Issue 10). DOI: 10.3390/f12101388.
Hayati, N. Q., Nurmalinda, N., & Marwoto, B. (2019). Inovasi Teknologi Tanaman Krisan yang Dibutuhkan Pelaku Usaha (Technology Innovation of Chrysanthemum Needed by Stakeholders). Jurnal Hortikultura, 28(1), 147. DOI: 10.21082/jhort.v28n1.2018.p147-162.
Hönig, M., Plíhalová, L., Husičková, A., Nisler, J., & Doležal, K. (2018). Role of Cytokinins in Senescence, Antioxidant Defence and Photosynthesis. In International Journal of Molecular Sciences (Vol. 19, Issue 12). DOI: 10.3390/ijms19124045.
Jader, H. S., & Obaid, O. H. (2023). Effect different concentrations of growth regulators on callus induction from different explants of Aloe vera L. in vitro. AIP Conference Proceedings, 2776(1), 30006. DOI: 10.1063/5.0137255.
Jung, W.-S., Chung, I.-M., Hwang, M. H., Kim, S.-H., Yu, C. Y., & Ghimire, B. K. (2021). Application of Light-Emitting Diodes for Improving the Nutritional Quality and Bioactive Compound Levels of Some Crops and Medicinal Plants. In Molecules (Vol. 26, Issue 5). DOI: 10.3390/molecules26051477.
Karami, O., de Jong, H., Somovilla, V. J., Acosta, B. V., Sugiarta, A. B., Wennekes, T., & Offringa, R. (2022). Structure-activity relationship of 2,4-D correlates auxin activity with the induction of somatic embryogenesis in Arabidopsis thaliana. BioRxiv. DOI: 10.1101/2022.08.17.504315.
Karjadi, A., & Buchory, A. (2008). Sifat Inovasi Dan Aplikasi Teknologi Pengelolaan Terpadu Kebun Jeruk Sehat Dalam Pengembangan Agribisnis Jeruk Di Kabupaten Sambas, Kalimantan Barat. Jurnal Hortikultura, 18(4), 380–384.
Khalifa, A. M., Eid, M. A., Gaafar, R. M., Saad-Allah, K. M., & Gad, D. (2023). Induction of bioactive constituents and antioxidant enzyme activities in Achillea fragrantissima (Forskal) callus cultures using ZnO nanoparticles. In Vitro Cellular & Developmental Biology - Plant, 59(6), 808–824. DOI: 10.1007/s11627-023-10388-8.
Lai, C.-C., Pan, H., Zhang, J., Wang, Q., Que, Q.-X., Pan, R., Lai, Z.-X., & Lai, G.-T. (2022). Light Quality Modulates Growth, Triggers Differential Accumulation of Phenolic Compounds, and Changes the Total Antioxidant Capacity in the Red Callus of Vitis davidii. Journal of Agricultural and Food Chemistry, 70(41), 13264–13278. DOI: 10.1021/acs.jafc.2c04620.
Liu, H., & Li, J. (2024). Plant photobiology: From basic theoretical research to crop production improvement. Journal of Integrative Plant Biology, 66(5), 847–848. DOI: https://doi.org/10.1111/jipb.13672.
Ma, J., Li, Q., Zhang, L., Cai, S., Liu, Y., Lin, J., Huang, R., Yu, Y., Wen, M., & Xu, T. (2022). High auxin stimulates callus through SDG8-mediated histone H3K36 methylation in Arabidopsis. Journal of Integrative Plant Biology, 64(12), 2425–2437. DOI: https://doi.org/10.1111/jipb.13387.
Mardiana, Y., Dwi Putriani, L., & Setyo Utomo, P. (2024). Pengaruh Pemilihan Eksplan Dan Varietas Terhadap Induksi Kalus Tanaman Tebu (Saccharum Officinarum L). Jurnal Ilmiah Agrineca, 24(1), 79–88. DOI: 10.36728/afp.v24i1.3106.
Ozias-Akins, P., & Vasil, I. K. (1983). Callus induction and growth from the mature embryo ofTriticum aestivum (Wheat). Protoplasma, 115(2), 104–113. DOI: 10.1007/BF01279802.
Pratiwi, H. G., Wardana, R., & Jumiatun, J. (2024). Pengaruh Pemberian ZPT IAA Dan BAP Terhadap Pertumbuhan Ubi Jalar (Ipomoea batatas L.) Ungu Secara In Vitro: Effect of ZPT IAA and BAP Administration on Purple Sweet Potato (Ipomoea batatas L.) Adornment in Vitro. Jurnal Ilmiah Inovasi, 24(1), 1–7. DOI: 10.25047/jii.v24i1.4092.
Qiu, T., Li, S., Zhao, K., Jia, D., Chen, F., & Ding, L. (2023). Morphological Characteristics and Expression Patterns of CmCYC2c of Different Flower Shapes in Chrysanthemum morifolium. In Plants (Vol. 12, Issue 21, p. 3728). DOI: 10.3390/plants12213728.
Rani, D., Kobtrakul, K., Luckanagul, J. A., Thaweesest, W., Rojsitthisak, P., De-Eknamkul, W., & Vimolmangkang, S. (2021). Differential gene expression levels, chemical profiles, and biological activities of Pueraria candollei var. mirifica callus cultures at different growth stages. Plant Cell, Tissue and Organ Culture (PCTOC), 147(1), 61–72. DOI: 10.1007/s11240-021-02105-3.
Rashid, R. K., & Neamah, S. I. (2023). 2,4-Dichlorophenoxyacetic Acid and 6-Benzyladenine Stimulate of Indication and Biomass Accumulation in a Phaseolus Vulgaris Callus Culture. IOP Conference Series: Earth and Environmental Science, 1252(1). DOI: 10.1088/1755-1315/1252/1/012105.
Ratnasari., B. D., Suminar, E., Nuraini, A., & Ismail, A. (2016). Pengujian efektivitas berbagai jenis dan konsentrasi sitokinin terhadap multiplikasi tunas mikro pisang (Musa paradisiaca L.) secara In Vitro. Kultivasi, 15(2), 74–80. DOI: 10.24198/kultivasi.v15i2.11870.
Ruvalcaba-Ruíz, D; Rojas-Bravo, D., Valencia-Botín, A. J. (2010). Tropical and Subtropical Agroecosystems. Tropical and Subtropical Agroecosystems, 12, 139–143.
Sari, N., Suwarsi, E., & Sumadi. (2014). Optimasi Jenis dan Konsentrasi ZPT dalam Induksi Kalus Embriogenik dan Regenerasi menjadi Planlet pada Carica pubescens (Lenne & K.Koch). Biosaintifika, 6(1), 51–59.
Sindhu, S. S. (2015). Ornamental Horticulture. Ornamental Horticulture, 0, 41–48. DOI: 10.59317/9789390083329.
Song, W., Song, Y., Liu, X., Zhang, X., Xin, R., Duan, S., Guan, S., & Sun, X. (2023). Improvement of Culture Conditions and Plant Growth Regulators for In Vitro Callus Induction and Plant Regeneration in Paeonia lactiflora Pall. Plants, 12(23), 3968. DOI: 10.3390/plants12233968.
Syahid, S. F., & Hernani, H. (2001). Pengaruh Zat Pengatur Tumbuh Terhadap Pembentukan Dan Pertumbuhan Serta Kandungan Sinensetin Dalam Kalus Pada Tanaman Kumis Kucing (Orlhosiphon Arislatus ). Industrial Crops Research Journal, 7(4), 99–103. DOI: 10.21082/littri.v7n4.2001.99-103.
Tilley, A., McHenry, M. P., McHenry, J. A., Solah, V., & Bayliss, K. (2023). Enzymatic browning: The role of substrates in polyphenol oxidase mediated browning. Current Research in Food Science, 7, 100623. DOI: https://doi.org/10.1016/j.crfs.2023.100623.
Ubudiyah, I. W. A., & Nurhidayati, T. (2013). Respon Kalus Beberapa Varietas Padi ( Oryza sativa L .) pada Kondisi Cekaman Salinitas ( NaCl ) secara In Vitro. Jurnal Sains Dan Seni Pomits, 2(2), 138–143.
Venkateshwarlu, M. (2022). In Vitro Culture Techniques from Cotyledon Explants of Celastrus Paiculatus (Wild) a Medicinal Important Plant. International Journal of Current Research and Review, 14(03), 60–62. DOI: 10.31782/ijcrr.2022.14311.
Vidican, T. I., Cărbunar, M. M., Lazăr, A. N., Borza, I. M., Popoviciu, G. A., Ienciu, A. I., Cărbunar, M. L., & Vidican, O. M. (2024). The influence exerted by LEDs and fluorescent tubes, of different colorson regenerative processes and morphogenesis of Rebutia heliosa in vitro cultures. Journal of Central European Agriculture, 25(2), 502–516. DOI: 10.5513/JCEA01/25.2.4336.
Wang, F., Zhang, F.-J., Chen, F.-D., Fang, W.-M., & Teng, N.-J. (2014). Identification of Chrysanthemum (Chrysanthemum morifolium) Self-Incompatibility. The Scientific World Journal, 2014(1), 625658. DOI: https://doi.org/10.1155/2014/625658.
Yu, J., Liu, W., Liu, J., Qin, P., & Xu, L. (2017). Auxin control of root organogenesis from callus in tissue culture. Frontiers in Plant Science, 8(August), 1–4. DOI: 10.3389/fpls.2017.01385.
Zhai, N., & Xu, L. (2021). Pluripotency acquisition in the middle cell layer of callus is required for organ regeneration. Nature Plants, 7(11), 1453–1460. DOI: 10.1038/s41477-021-01015-8.
Zhao, J., Zhu, W.-H., Hu, Q., & He, X.-W. (2001). Enhanced indole alkaloid production in suspension compact callus clusters of Catharanthus roseus: impacts of plant growth regulators and sucrose. Plant Growth Regulation, 33(1), 33–41. DOI: 10.1023/A:1010732308175.
Zuzarte, M., Salgueiro, L., & Canhoto, J. (2024). Plant Tissue Culture: Industrial Relevance and Future Directions. In J. Steingroewer (Ed.), Plants as Factories for Bioproduction: Recent Developments and Applications (pp. 1–15). Springer International Publishing. DOI: 10.1007/10_2024_254.
- View 45 times Download 45 times pdf
Copyright (c) 2024 Tia Setiawati, Annisa Nur Arofah, Ani Lestari, Rusdi Hasan
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.