Bakteriosin dari Bakteri Asam Laktat sebagai Biopreservasi pada Daging dan Olahan: Tinjauan Potensi Hingga Industrinya

  • Diannisa Syahwa Rahma Fadila Program Studi Biologi FST, Universitas Islam Negeri Syarif Hidayatullah Jakarta
  • Jilan Hasanati Program Studi Biologi FST, Universitas Islam Negeri Syarif Hidayatullah Jakarta
  • Amalia Sekar Kusumawardhani Program Studi Biologi FST, Universitas Islam Negeri Syarif Hidayatullah Jakarta
  • Muhammad Fathur Rachman Program Studi Biologi FST, Universitas Islam Negeri Syarif Hidayatullah Jakarta
  • Muhammad Afi Naufal Program Studi Biologi FST, Universitas Islam Negeri Syarif Hidayatullah Jakarta
  • Farhan Wahyu Febrian Program Studi Biologi FST, Universitas Islam Negeri Syarif Hidayatullah Jakarta
  • Megga Pikoli Program Studi Biologi FST, Universitas Islam Negeri Syarif Hidayatullah Jakarta
  • Irawan Sugoro Pusat Riset Teknologi Aplikasi Isotop dan Radiasi, Badan Riset Inovasi Nasional, Jakarta
Keywords: Bacteriocins, Biopreservation, Meat, Lactic Acid Bacteria

Abstract

The use of bacteriocin as biopreservation agent is an important alternative strategy to maintain the safety and quality of meat and meat products. The increasing consumer concerns about the quality and safety of food from chemical additives have led to the development of studies on the use of bacteria and their metabolites as natural antimicrobials that have the potential to extend shelf life and improve food safety. This article aims to systematically review knowledge regarding the use of bacteriocin-producing lactic acid bacteria and their production on an industrial scale as a natural preservative in meat and its products. The results of several studies prove the potential of lactic acid bacteria and metabolites as biopreservatives in meat and processed meat products with several conditions that must be considered to achieve a longer shelf life and inhibit the spoilage of pathogenic bacteria. The use of bacteriocins from lactic acid has obstacles as well as advantages. However, these barriers can be overcome by reducing the level of purification protocols required, or by using food grade media such as dairy and food industrial waste products to produce bacteriocins. The potential and production of bactetriocins on an industrial scale are discussed.

 

References

Anastasiadou, S., Papagianni, M., Filiousis, G., Ambrosiadis, I., & Koidis, P. 2008. Pediocin SA-1, an antimicrobial peptide from Pediococcus acidilactici NRRL B5627: Production conditions, purification and characterization. Bioresource Technology, 99(13), 5384–5390. https://doi.org/10.1016/j.biortech.2007.11.015

Arthur, T. D., Cavera, V. L., & Chikindas, M. L. 2014. On bacteriocin delivery systems and potential applications. Future Microbiology, 9(2), 235–248. https://doi.org/10.2217/fmb.13.148

Barcenilla, C., Ducic, M., López, M., Prieto, M., & Álvarez-Ordóñez, A. 2022. Application of lactic acid bacteria for the biopreservation of meat products: A systematic review. Meat Science, 183, 108661. https://doi.org/10.1016/J.MEATSCI.2021.108661

Barman, S., Ghosh, R., & Mandal, N. C. 2014. Use of bacteriocin producing Lactococcus lactis subsp. lactis LABW4 to prevent Listeria monocytogenes induced spoilage of meat. Food and Nutrition Sciences, 05(22), 2115–2123. https://doi.org/10.4236/fns.2014.522224

Chen, H., Tian, F., Li, S., Xie, Y., Zhang, H., & Chen, W. 2012. Cloning and heterologous expression of a bacteriocin sakacin P from Lactobacillus sakei in Escherichia coli. Applied Microbiology and Biotechnology, 94(4), 1061–1068. https://doi.org/10.1007/s00253-012-3872-z

Cotter, P. D., Ross, R. P., & Hill, C. 2013. Bacteriocins-a viable alternative to antibiotics? Nature Reviews Microbiology, 11(2), 95–105. https://doi.org/10.1038/nrmicro2937

De Arauz, L. J., Jozala, A. F., Baruque-Ramos, J., Mazzola, P. G., Júnior, A. P., & Penna, T. C. V. 2012. Culture medium of diluted skimmed milk for the production of nisin in batch cultivations. Annals of Microbiology, 62(1), 419–426. https://doi.org/10.1007/s13213-011-0278-6

de Freire Bastos, M. D. C., Varella Coelho, M. L., & da Silva Santos, O. C. 2015. Resistance to bacteriocins produced by gram-positive bacteria. In Microbiology (United Kingdom) (Vol. 161, Issue 4). https://doi.org/10.1099/mic.0.082289-0

Desniar, Poernomo, D., & Wijatur, W. 2009. The influence of salt concentration on peda chub mackerel (Rastrelliger sp.) with spontaneous fermentation. Jurnal Pengolahan Hasil Perikanan Indonesia, 12(1), 73–87. https://doi.org/10.17844/jphpi.v12i1.898

Desniar, Rusmana, I., Suwanto, A., & Mubarik, N. R. 2011. Penapisan bakteriosin dari bakteri asam laktat asal bekasam. Jurnal Pengolahan Hasil Perikanan Indonesia, 14(2), 124–133. https://doi.org/10.17844/jphpi.v14i2.5321

EFSA, E. F. S. A. 2019. The European Union One Health 2018 Zoonoses Report. EFSA Journal, 17(12), 5926. https://doi.org/10.2903/j.efsa.2019.5926

Fangio, M. F., & Fritz, R. 2014. Potential use of a bacteriocin-like substance in meat and vegetable food biopreservation. International Food Research Journal, 21(2), 677–683.

Gálvez, A., Abriouel, H., López, R. L., & Omar, N. Ben. 2007. Bacteriocin-based strategies for food biopreservation. International Journal of Food Microbiology, 120(1–2), 51–70. https://doi.org/10.1016/j.ijfoodmicro.2007.06.001

Gálvez, A., López, R. L., Abriouel, H., Valdivia, E., & Omar, N. Ben. 2008. Application of bacteriocins in the control of foodborne pathogenic and spoilage bacteria. Critical Reviews in Biotechnology, 28(2), 125–152. https://doi.org/10.1080/07388550802107202

Garsa, A. K., Kumariya, R., Sood, S. K., Kumar, A., & Kapila, S. 2014. Bacteriocin production and different strategies for their recovery and purification. Probiotics and Antimicrobial Proteins, 6(1), 47–58. https://doi.org/10.1007/s12602-013-9153-z

Gautam, N., & Sharma, N. 2009. Bacteriocin: Safest approach to preserve food products. Indian Journal of Microbiology, 49(3), 204–211. https://doi.org/10.1007/s12088-009-0048-3

Hadiwiyoto, S., Rahayu, E. S., & Bawono, I. Y. 2012. Pengawetan daging segar dengan ekstrak metabolik bakteri asam laktat dari buah tomat. Buletin Peternakan, 29(1), 35. https://doi.org/10.21059/buletinpeternak.v29i1.1160

Halami, P. M., & Chandrashekar, A. 2005. Enhanced production of pediocin C20 by a native strain of Pediococcus acidilactici C20 in an optimized food-grade medium. Process Biochemistry, 40(5), 1835–1840. https://doi.org/10.1016/j.procbio.2004.06.065

Hariani, L. 2013. Produksi bakteriosin oleh Lactobacillus plantarum DJ3 dan aplikasinya sebagai pengawet daging. El–Hayah, 4(1), 17–26. https://doi.org/10.18860/elha.v4i1.2617

Hendra, & Hidayat, S. 2020. Pengaruh pemanfaatan cairan hasil fermentasi sawi putih (Brassica rapa L. var Pekinensis) sebagai bahan pengawet alami terhadap kualitas ikan tambakan (Helostoma temminckii C.V.). Edubiolock, 1(2), 1–9.

Hu, Z. Y., Balay, D., Hu, Y., McMullen, L. M., & Gänzle, M. G. 2019. Effect of chitosan, and bacteriocin – Producing Carnobacterium maltaromaticum on survival of Escherichia coli and Salmonella Typhimurium on beef. International Journal of Food Microbiology, 290(October 2018), 68–75. https://doi.org/10.1016/j.ijfoodmicro.2018.10.003

Jiang, H., Li, P., & Gu, Q. 2016. Heterologous expression and purification of Plantaricin NC8, a two-peptide bacteriocin against Salmonella spp. from Lactobacillus plantarum ZJ316. Protein Expression and Purification, 127, 28–34. https://doi.org/10.1016/j.pep.2016.06.013

Kim, S. J., Cho, A. R., & Han, J. 2013. Antioxidant and antimicrobial activities of leafy green vegetable extracts and their applications to meat product preservation. Food Control, 29(1), 112–120. https://doi.org/10.1016/j.foodcont.2012.05.060

Kumari, A., Garg, A. P., Makeen, K., Lal, M., Gupta, C., & Chandra, S. 2008. A bacteriocin production on soya nutri nuggets extract medium by Lactococcus lactis subsp. lactis CCSUB202. International Journal of Dairy Science, 3(1), 49–54. https://doi.org/10.3923/ijds.2008.49.54

Larasati, E. 2017. Pengaruh penambahan stater Lactobacillus plantarum pada level dan waktu inkubasi berbeda terhadap karakteristik kimia dendeng iris fermentasi. Skripsi. Universitas Hasanuddin, Makassar.

Lestariningsih, L., & Azis, R. 2018. Potensi Lactobacillus plantarum sebagai bahan pengawet alami bakso daging kelinci. Briliant: Jurnal Riset Dan Konseptual, 3(3), 327. https://doi.org/10.28926/briliant.v3i3.220

Malvido, M. C., González, E. A., Bazán Tantaleán, D. L., Bendaña Jácome, R. J., & Guerra, N. P. 2019. Batch and fed-batch production of probiotic biomass and nisin in nutrient-supplemented whey media. Brazilian Journal of Microbiology, 50(4), 915–925. https://doi.org/10.1007/s42770-019-00114-1

Metelev, M., Serebryakov, M., Ghilarov, D., Zhao, Y., & Severinov, K. 2013. Structure of microcin B-like compounds produced by Pseudomonas syringae and species specificity of their antibacterial action. Journal of Bacteriology, 195(18), 4129–4137. https://doi.org/10.1128/JB.00665-13

Mortensen, A., Aguilar, F., Crebelli, R., Di Domenico, A., Dusemund, B., Frutos, M. J., Galtier, P., Gott, D., Gundert-Remy, U., Lambré, C., Leblanc, J. C., Lindtner, O., Moldeus, P., Mosesso, P., Oskarsson, A., Parent-Massin, D., Stankovic, I., Waalkens-Berendsen, I., Woutersen, R. A., … Younes, M. 2017. Re-evaluation of potassium nitrite (E 249) and sodium nitrite (E 250) as food additives. EFSA Journal, 15(6), 4786. https://doi.org/10.2903/j.efsa.2017.4786

Mulyadi, A. F., Dewi, ika atsari, & Ikawati, N. Q. F. 2015. Upscaling of dried noodles processing from sweet potato (Ipomea batatas L.). Jurnal Teknologi Pertanian, 16(1), 41–50.

Nurraifah, Y., Arief, I. I., & Ulupi, N. 2021. Penggunaan bakteriosin yang diproduksi oleh Lactobacillus plantarum sebagai pengawet alami untuk daging ayam yang disimpan di suhu ruang. Jurnal Ilmu Produksi Dan Teknologi Hasil Peternakan, 9(1), 7–14. https://doi.org/10.29244/jipthp.9.1.7-14

Pisoschi, A. M., Pop, A., Georgescu, C., Turcuş, V., Olah, N. K., & Mathe, E. 2018. An overview of natural antimicrobials role in food. European Journal of Medicinal Chemistry, 143, 922–935. https://doi.org/10.1016/j.ejmech.2017.11.095

Reddy, S. G., Chen, M. L., & Patel, P. J. 1975. Influence of lactic cultures on the biochemical, bacterial and organoleptic changes in beef. Journal of Food Science, 40(2), 314–318. https://doi.org/10.1111/j.1365-2621.1975.tb02191.x

Rogers, L. A. 1928. The inhibiting effect of Streptococcus lactis on Lactobacillus bulgaricus. https://journals.asm.org/journal/jb

Rosano, G. L., & Ceccarelli, E. A. 2014. Recombinant protein expression in Escherichia coli: Advances and challenges. Frontiers in Microbiology, 5(APR), 1–17. https://doi.org/10.3389/fmicb.2014.00172

Sakaridis, I., Soultos, N., Batzios, C., Ambrosiadis, I., & Koidis, P. 2014. Lactic acid bacteria isolated from chicken carcasses with inhibitory activity against Salmonella spp. and Listeria monocytogenes. Czech Journal of Food Sciences, 32(1), 61–68. https://doi.org/10.17221/414/2012-cjfs

Schelegueda, L. I., Vallejo, M., Gliemmo, M. F., Marguet, E. R., & Campos, C. A. 2015. Synergistic antimicrobial action and potential application for fish preservation of a bacteriocin produced by Enterococcus mundtii isolated from Odontesthes platensis. LWT - Food Science and Technology, 64(2), 794–801. https://doi.org/10.1016/j.lwt.2015.06.017

Singh, R., Sivasubramani, K., Jayalakshmi, S., Satheesh, S., & Selvi, C. 2013. Isolation and production of bacteriocin by marine Lactobacillus fermentum SBS001. International Journal of Current Microbiology and Applied Sciences, 2(4), 67–73.

Smaoui, S., Hsouna, A. Ben, Lahmar, A., Ennouri, K., Mtibaa-Chakchouk, A., Sellem, I., Najah, S., Bouaziz, M., & Mellouli, L. 2016. Bio-preservative effect of the essential oil of the endemic Mentha piperita used alone and in combination with BacTN635 in stored minced beef meat. Meat Science, 117, 196–204. https://doi.org/10.1016/j.meatsci.2016.03.006

Subha, V., Nithya Quintoil, M., Porteen, K., & Sood, S. K. 2017. Bacteriocin production by immobilized Lactobacillus casei in paneer whey is enhanced upon continuous fermentation. Indian Veterinary Journal, 94(9), 64–66.

Sunaryanto, R., & Tarwadi, T. 2015. Isolasi dan karakterisasi bakteriosin yang dihasilkan oleh Lactobacillus lactis dari sedimen laut. Jurnal Pascapanen Dan Bioteknologi Kelautan Dan Perikanan, 10(1), 11. https://doi.org/10.15578/jpbkp.v10i1.240

Usmiati, S., & Richana, N. 2016. Potensi bakteriosin dari Lactobacilus sp. galur SCG 1223 sebagai biopreservatif pada daging segar. Buletin Teknologi Pasca Panen, 7(2), 65–77.

Xiraphi, N., Georgalaki, M., Rantsiou, K., Cocolin, L., Tsakalidou, E., & Drosinos, E. H. 2008. Purification and characterization of a bacteriocin produced by Leuconostoc mesenteroides E131. Meat Science, 80(2), 194–203. https://doi.org/10.1016/j.meatsci.2007.11.020

Yildirim, S., Konrad, D., Calvez, S., Drider, D., Prévost, H., & Lacroix, C. 2007. Production of recombinant bacteriocin divercin V41 by high cell density Escherichia coli batch and fed-batch cultures. Applied Microbiology and Biotechnology, 77(3), 525–531. https://doi.org/10.1007/s00253-007-1188-1

Zhang, J., Liu, G., Li, P., & Qu, Y. 2010. Pentocin 31-1, a novel meat-borne bacteriocin and its application as biopreservative in chill-stored tray-packaged pork meat. Food Control, 21(2), 198–202. https://doi.org/10.1016/j.foodcont.2009.05.010

Published
2022-03-31
How to Cite
Fadila, D. S. R., Hasanati, J., Kusumawardhani, A. S., Rachman, M. F., Naufal, M. A., Febrian, F. W., Pikoli, M., & Sugoro, I. (2022). Bakteriosin dari Bakteri Asam Laktat sebagai Biopreservasi pada Daging dan Olahan: Tinjauan Potensi Hingga Industrinya. Jurnal Pro-Life, 9(1), 300-315. https://doi.org/10.33541/pro-life.v9i1.3667
Section
Articles