PEMODELAN ESTIMASI BIAYA KONSEPTUAL PROYEK GEDUNG SEKOLAH DENGAN MENGGUNAKAN ARTIFICIAL NEURAL NETWORK
Abstract
According to Central Bureau of Statistics (Badan Pusat Statistik), in 2015 the population of Special Capital Region of Jakarta was 10,177,900 people with the rate of growth 1.02% per annum. Approximately, 14.7% of the population are students. In order to fulfil the demand of good quality education, the X school foundation develops and builds new schools continuously, especially in Jakarta and its suburbs. The planning of school development should be done well. One of the initial steps is to conduct a feasibility study. Conceptual cost estimation is important at this stage. There are some difficulties in estimating the cost at the conceptual stage, such as the lack of preliminary information about the project, lack of project cost data, incomplete data, et cetera. The purpose of this study is to create model using Artificial Neural Network. To determine the input variables, analysis factors were used. After that, the model was created by using Matlab software. This research was conducted by collecting 15 data of school building projects. The result of this study shows the best Artificial Neural Network model is network architecture 7-5-1 with backpropagation algorithm.
References
Al-Tawal D.R., Arafah M. and Sweis G.J. (2021). A Model Utilizing the Artificial Neural Network in Cost Estimation of Construction Projects in Jordan. Engineering Construction and Architectural Management Vol. 28 No. 9, pp. 2466-2488. https://doi.org/10.1108/ECAM-06-2020-0402
Arafa, M. and Alqedra, M. (2011). Early Stage Cost Estimation of Buildings Construction Projects using Artificial Neural Networks. Journal of Artificial Intelligence 4.
Association for the Advancement of Cost Engineering. (2012). AACE International Recommended Practice No. 56S-08, Cost Estimate Classification System-as Applied for the Building and General Construction Industries, TCM Framework: 7.3-Cost Estimating and Budgeting. Morgantown: AACE International.
Badan Pusat Statistik (2016). Profil Penduduk Indonesia Hasil Supas 2015. Badan Pusat Statistik.
Cheng, M.Y., Hsing, C.T., and Hsieh, W.S. (2009). Web-based Conceptual Cost Estimates for Construction Projects Using Evalutionary Fuzzy Neural Inference Model. Automation in Construction, Vol. 18.
Cirilovic, J., Vajdic, N., Mladenovic, G., and Queiroz, C. (2014). Developing Cost Estimation Models for Road Rehabilitation and Reconstruction: Case Study of Projects in Europe and Central Asia. Journal of Construction Engineering & Management, ASCE 140.
Emsley, M.W., Lowe, D.J., Duff, A.R., Harding A., and Hickson, A. (2002). Data Modelling and The Application of a Neural Network Approach to the Prediction of Total Construction Cost. Journal of Construction Management and Economics, Vol. 20.
Gunaydin, M.H. and Dogan, S.Z. (2004). A Neural Network Approach for Early Cost Estimation of Structural Systems of Buildings. Int. J. Project Manage., 22: 595-602.
Jong, J.S. (2005). Jaringan Syaraf Tiruan & Pemrogramannya Menggunakan Matlab. Yogyakarta: Andi Offset. 2005.
Kim, G.H., Yoon, J.E., An, S.H., Cho, H.H., and Kang, Kl. (2004). Neural Network Model Incorporating a Genetic Algorithm in Estimating Construction Costs. Journal of Building and Environment, Vol. 39.
Nia S. B., Taheri M., and Jamalpour R. (2023). Achieving Realistic Cost Estimates in Building Construction Projects: A Reliability Assessment of Pre-Construction Stage Cost Estimates. International Journal of Construction Engineering and Management, Vol. 12, No. 3, pp. 81-90.
Oei, F. J., Tampubolon, S. P., & Finella, C. (2023). Tinjauan Produktivitas Pekerja Pada Dua Proyek Serta Faktor Yang Mempengaruhinya. Jurnal Rekayasa Teknik Sipil Dan Lingkungan-CENTECH, 4(1), 15-24.
Pettang, C. Mbumbia, L. and Foudjet, A. (1997). Estimating Building Materials Cost in Urban Housing Construction Projects, based on Matrix Calculation. Construct. Build. Mater.
Pemerintah Republik Indonesia. Peraturan Menteri Pekerjaan Umum Nomor 45/PRT/M/2007 Tentang Pedoman Teknis Pembangunan Bangunan Gedung Negara.
Putra A. B. dan Setyandito O. (2023). Analysis of Construction Cost Estimation Ministry Regulation Year 2016 and Year 2022 for Construction Projects. Jurnal Sains Teknologi dan Industri, Vol. 20, No. 2, pp. 611-622.
Sodikov, Jamshid. (2005). Cost Estimation of Highway Projects in Developing Countries: Artificial Neural Network Approach. Journal of the Eastern Asia Society. Transport Stud. 6.
Wang, R., Salleh H., Abdul-Samad Z., Radzuan N.F.M., and Kok C.W. (2024). Fundamentals of Developing Conceptual Cost Estimation Models Using Machine Learning Techniques: Selection and Measurement of Building Attributes. Planning Malaysia: Journal of the Malaysian Institute of Planners, Vol. 22, No. 3, pp. 242-256.
Zhang J., Yuan , J., Mahmoudi A., Ji W., and Fang Q. (2024). A Data-Driven Framework for Conceptual Cost Estimation of Infrastructure Projects Using XGBoost and Bayesian Optimization. Journal of Asian Architecture and Building Engineering, January. https://doi.org/10.1080/13467581.2023.2294871
- View 0 times Download 0 times Requires Subscription Paper 6
Copyright (c) 2024 Fuk Jin Oei
This work is licensed under a Creative Commons Attribution 4.0 International License.
Hak Cipta atas Tulisan Karya Ilmiah
Bersama dengan ini saya sebagai penulis utama menyatakan bahwa paper yang saya kirimkan untuk dipublikasikan melalu Jurnal Rekayasa Teknik Sipil dan Lingkungan adalah benar merupakan hasil orisinil Tulisan Karya Ilmiah yang merupakan hasil penelitian/kajian yang saya lakukan dan belum pernah dipublikasikan pada penerbit Jurnal ilmiah lain di Indonesia.
Jika di kemudian hari ternyata ditemukan bukti adanya hal-hal yang tidak sesuai dari pernyataan diatas maka saya bersedia menerima konsekuensi yang diberikan oleh Dewan Redaksi Jurnal Rekayasa Teknik Sipil dan Lingkungan serta paper yang telah diterbitkan akan DIBATALKAN dan dinyatakan sebagai hasil karya PLAGIASI.